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Abstract

The goal of this project is to take an object detection AI and implement it onto

a Raspberry Pi Zero 2W. Different AI’s will each be compared to see which one

will best fulfill the project requirements. Once having picked which AI is most

optimized for the task, documentation on the system use will be created in order

that an average user will know how to turn on the unit in order to start the object

recognition. Additionally, a different set of directions will be created in order to

show how to create a new model for the system to use. Other programs will be

created in order to use the camera, such as a video recorder and a still image storing

program.
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Chapter 1

Introduction

1.1 The Problem

Autonomous underwater cameras can play an important role in exploring the

oceans. They allow image capture for future image analysis and object or event

detection. However, a problem with the current underwater cameras is they can be

power hungry as well as the storage space for images can be limited. Resulting in

a the camera system being tethered to something above water to transmit images

and give power which can limit it over all depth as well as be a hazard to ocean life.

In order to combat the issue of power and storage Raspberry Pi 3 and 4’s are being

used fo recording video. This is a great step as Raspberry Pi’s are compact can be

lower power and can hold a lot of storage. However there are other alternatives to

the pi4 that can be lower power and still do the same tasks. The Raspberry pi Zero

2W is a good alternative as it is lower power while also having enough computational

power to preform some basic functions. In order to fully unitize the power on the

Pi Zero as well as save storage space the goal of the project will to implement basic

object detection onto a Raspberry Pi Zero 2W.
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1.2 AI

Object detection with AI can be used for a number of applications as such as

surveillance, robotics, or quality control. Using AI in a system allows for a smaller

form factor as a human interface is no longer needed. Using AI had been known to

be a struggle due to the immense computing power that used to be required in order

to run. However, in recent years there has been a huge leap forward in using AI, as

there are new architectures that allow for a model to run on micro computers, such

as the Raspberry Pi. There are a lot easier interface tools for using AI. There are

systems such as TensorFlow Model Maker that are able to build an entire model

with fourteen lines of code. This allows for people to create their own models to

allow use in many more applications ([KH22]).

1.3 Existing System

One AI application that is being pursed is monitoring the ocean. One such appli-

cation that it is currently in use is for undersea surveillance off the coast of Greece.

A system is called “NOUS”, is able to monitor the area around the shipwreck and

allow for basic object detection, such as scuba divers. This system was implemented

in 2020 and is something that is active and working, there are 5 cameras in the sys-

tem. Each camera has a raspberry Pi 3 or 4 which is able to screen the video feed

and allow for object detection ([nou]). A different system in Canada was designed

in 2020 and was able to stay underwater for fourteen days on one battery charge

allowing it to work for long periods of time autonomously with little interface needed

([MBC+20]).
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Chapter 2

Related Work

This project has the goal of adding basic object detection to an underwater

camera to allow for long term surveillance of systems or areas with minimal electrical

power capabilities.

2.1 Underwater Vision

There are a couple of ways that currently exist in order to observe objects in

the ocean: acoustic and optical imaging. For example, a common way for fish to

be monitored is by using acoustic imaging. This allows for the fish population and

different fish behavior to be monitored. This system works, as it is robotic in nature

and not sight dependent, meaning lenses and cameras do not need to be constantly

cleaned or maintained in order to observe the environment. However, a problem

with this is that there is no color information and the identification of fish must be

done solely on the size of the fish in the image. This is where cameras can play a

role in underwater observation, as the item the camera is trying to observe does not

have to be solid. This can be crucial for detecting things like oil leaks or damage to

an undersea cable ([SHA22]).
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2.2 Hardware

There a multitude of different micro computers that are available on the market.

A very common and popular one is the Raspberry Pi. This is due to its small

size, cost and the amount of computing power that is available. It was also used

in the “NOUS” system as stated above, showing that it is capable of running AI.

For our project a Raspberry Pi Zero 2W will be used. There a couple of reason

for this: size and power. An important factor for the camera is that the system

should be as small as possible. This will allow for it to be placed in more locations

while also allowing for the system to lighter, making it more portable. Another

factor is power consumption. The Raspberry Pi4 has an idle current consumption

of 516mA. However, when it is under load such a running an AI model, the system

will draw more than 1A. This is a lot of current when running on a battery ([Zah22]).

However, the Pi Zero 2W, consumes 270mA when idling and 370mA when under a

load. This lower power consumption is the biggest reason the Pi Zero was chosen

as the system is intended to be used for long periods on battery power ([Zah22]).

2.3 Current AI’s

There are a number of different algorithms that are able to run on a Raspberry

PI, such as: “EfficientDet”, “Mobilenet”, “Yolo”, and “Resnet”. As well, there are

multiple versions of each architecture, for example YOLO has v1,v2,v3,..,v7. With

each version comes faster speeds or greater accuracy. We trimmed down the list

of the different AI’s evaluated based on advertised features that we desired. The

three that were looked at in more detail were “EfficientDet”, “MobileNet”, and

“YOLOv5”. A feature important to consider when making the model is over fitting.
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The base model was trained on roughly 3000 images per item. This implys a new

data set should be equal to or less than that in order to prevent over fitting.

2.4 Different stage AI’s

There are multiple types of AI’s that each have their own advantages and dis-

advantages. In the world of AI’s there are two different types of AI: a one stage

and a two stage detector. Both single and double stage detectors are able to run

object classification. The difference between the two detectors is how the AI looks

at the image coming in. A one stage will make a fixed amount of predictions based

on a grid. A two stage will leverage a proposal network to find different objects and

then use a second network to fine tune the guess of the object ([Jor18]). The two

stage is a little more accurate, but it requires more computational power in order

to work. It is also slower due to the object being analyzed twice before the final

output. Knowing that the final project will be run on a Raspberry Pi Zero 2W, the

better approach for our project would be to use a one stage AI, mainly due to the

fact the Pi Zero 2W only has 0.5gb of RAM.

2.5 New Tech

This project will entail trying to find the best preforming object detection model

that is able to run on a Raspberry Pi Zero 2W in order to detect basic under water

items such as fish and other species. A collection of different models will have to be

built in order to see which one preforms most optimally on the Pi Zero. Another

part of the project involves creating and utility programs, such as a camera AI

labeling program that will help with taking new pictures of objects for training, as

well as a program that is able to act as a video recorder.
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Chapter 3

Overall Design

3.1 Requirements

The project has several constraints: the AI model must run on a Raspberry Pi

Zero 2W due to the Pi’s small size and low power consumption, for extend battery

life. Another problem when using the Pi Zero 2W for AI object recognition is it

contains only 512gb of RAM, which is a low amount for an AI model which usually

require many times more RAM. Another requirement is the camera being used is a

Sony IMX477 sensor due to compatibility with the Raspberry Pi and because the

underwater camera was designed to use this sensor size.

3.2 Prove AI Reliability

In comparing a one stage to a two stage detector, the decision was made to

use a one stage detector. A one stage detector model runs faster and there is a

greater availability of open source one stage detectors for the Raspberry Pi versus

two stage detectors. After picking the type of detector, the model architecture has

to be chosen. Doing research revealed several different algorithms that can be run

on a Raspberry Pi including: “EfficientDet” ,”MobileNet”, “YOLO”, and “Regions

with Convolutional Neural Network (R-CNN)”. However, due to time constraints

only three of the models listed were pursued: EfficientDet, MobileNet, and YOLO.
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For development and testing of the different models a Raspberry Pi 4b 8GB micro

computer was used in order to make evaluating the different models a little faster, the

PI 4 also allows for easy connection to an Ethernet connection, making downloading

libraries easier. The first architecture tested was EfficientDet. Adafruit corporation

creates a product called the “BrainCraft hat” that provides different interfaces in

order to help make developing AI systems more user friendly. It has a display screen

and a set of push buttons. Unfortunately, this hat does not help with the speed

of the model. The hat has a tutorial provided by Adafruit that shows how to run

a model on the hat with TensorFlow. However, the code that was used in the

tutorial didn’t work. The problem was that the code was developed to use python

3.7 not 3.9, which is what the current test setup was configured for ([ARLW20]).

Using “pyenv” the python version number was able to be changed but a new error

appeared: the camera signal was not able to be fed into the program. Thinking was

that there was perhaps a problem with the program itself, as that program has not

been updated in a while and that the camera being used for the test set was not

exactly the same camera the tutorial used, a new tutorial was tested.

The following tutorial uses PyTorch and uses a MobileNet V2 architecture([Ric]).

The new tutorial uses OpenCV to capture an image from the camera, then send the

image to the model. This method should prove easier than the last program as it

will be able to show any errors in the program easier and point to whether it is a

camera problem or a model problem. This helps debugging as any camera issues

will result with an OpenCV error and any model issues will show up as an error

related to PyTorch. After compiling the program and running it once, there was an

error that OpenCV was not able to grab a frame from the camera. After looking

into the reason, it was found that the new version of Raspberry Pi OS released in

January of 2022 uses a new version of camera capture protocols called libcamera.
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The problem is that current OpenCV is not compatible with libcamera causing it

not to work.

In order to bypass this issue, user “Stuartofmt” came up with the idea to have

libcamera-vid act as a streaming service and then OpenCV would just latch onto the

url allowing OpenCV to get the video feed ([Stu22]). Once the camera signal was

able to be feed into the program the model could then be utilized. After modifying

the original code to include the server program, the model was indeed able to work!

Unfortunately after doing some testing with the program it was found the model was

pretty inaccurate mainly due to the fact the model was an image detector and not

an object detector. An example was a cup: the model acted fine when the cup was

empty, but when scissors or other objects were placed inside of the cup the model

was much more inaccurate identifying the cup. Noticing this problem, a different

type of model was used: an “object detector”. The architecture that was used was

“EfficientDet-lite” which was trained on common object in context(COCO) which

was built in TensorFlow. This model preformed far better and was able to pick out

the different objects in the picture while also running as a faster FPS compared to

that of the MobileNet v2 model.

The next model that was tried was a YOLO v5 model, this architecture worked

as expected in being able to identify some basic objects ([Dol22]). However, the

fps was very slow compared to the other two models. As a last test MobileNet

was tested again. This time with an object detector model ([Ost22]). This model

was trained on a different dataset that COCO but it seemed to have a faster FPS

for some objects and was a lot more confident in the identification compared to

EfficientDet model.

After seeing how the different models acted, the next step was to create a custom

model. The decision was made to try training an EfficientDet model because of its
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simplicity to train. TensorFlow created a program called TensorFlow model maker

that allows for easy transfer learning of EfficientDet models. Using model maker

only requires fourteen lines of code in order to use transfer learning on the model

([Kon22]). The tutorial that was used in order to build the model was written by

Khanh Khanhlvg and Nhan Ho D.([KH22]). Using the tutorial and model maker a

custom model was able to created. It was trained on planes and different vehicles.

The data was a mix of two different sets from Roboflow Universe ([Cha22, oS22]).

This data set in total had 2442 images, however the distribution of the training

and test data was not very well distributed. Another problem was that in some of

the classes there were only as few as 19 pictures of the item which was insufficient

for proper training. But, on objects such as planes, which consisted of most of

the pictures, the model was a lot more accurate. Though the distribution was not

correct, the mean average precision (mAp) of the model was really low.

Looking back over models that were tested, MobileNet was the better performing

of the two.

It was selected another MobileNet model for trial. This proved to be harder than

expected as there were many issues in following the tutorials. This was due to the

fact a lot of the tutorials were built 4 or 5 years ago and hence many of the versions

of code were not compatible any longer. After searching online, there was a tutorial

created by Google that teaches how to use transfer learning for a MobileNet model

([cor]). What this tutorial did differently was that it used a Docker image that

already had all software and settings correctly configured in order to ensure that

the model would work. Additionally, the tutorial also came with pre-trained data.

This was important as it allowed for better debugging since the data is guaranteed

to be correct and the errors would be related and assignable to the Docker image

itself versus the main operating system. This was helpful as there were a number
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or errors related to the Docker image when connecting to the internet through a

proxy. As well as, data images could not be downloaded directly onto the Docker

image due to network security restrictions. In order to bypass this issue, the images

were copied onto the main computer OS and then copied into to the Docker image.

Once all the issues with the model were resolved, there was an additional issue that

arose: the model would start training but then suddenly stop. It was found that

the computer training the model had insufficient resources to train the entire model,

but fortunately only training the last few layers worked.

In order to compare the two models fairly, both had to be trained on a common

custom data set. Knowing the camera will be placed under water, a new data

set was picked containing images of fish ([fyp22]). In order to judge the accuracy

of the model, cross validation was used to determine the average accuracy of the

model. The dataset consisted of 1017 images grouped into five different classes. For

the EfficientDet model, the images were easy fed into transfer learning as the model

maker automates many of the steps for the user. However, for the MobileNet model,

several custom sub-programs had to be created in order to create the csv files, text

files, and tri-maps images which were all required in order to create a TFRecord file.

The TFRecord would then be input to the model it was a general file that told the

model the location of the images, class name, annotation and other data important

for creating the model. This was implemented by a mix of both modifying code

that existed on the Docker image and by writing new programs from scratch to

make the required training files. Once all the files needed were generated and joined

together, the models were trained. First the EfficientDet models were trained and

evaluated. Then, the MobileNet models were trained and evaluated. In total there

are ten models, five from each type of model. Upon testing the models there was a

condition that was not originally considered: the model was trained assuming that
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there is a fish in every image but, this may not always be the case. Remedying

this error, a new dataset was created, but this time entailing seven different class

definitions: fish, healthy coral, bleached coral, marked null, dead coral, and turtles

([fyp22, The22, Hos22]). The steps for cross validation were repeated with the new

data set and the results were different from the previous model. Once all the models

were complete, working evaluation of the models began.

3.3 Essential Utility Programs

The camera project also needed a number of utility programs which required

development. One program was a camera image labeling application. This is a

program that has the goal of acquiring many quality camera images and store them

in a specific object directory folder. The program also examines each image to

ensure it is not too blurry before adding it to the object directory. This is important

because the frame rate on the camera is slow and there tends to be many useless

blurry images. Another application that was written was a digital video recorder

that starts once the computer power is turned on. The video is stored on a separate

SD card from the computer operating system as during the development, PI gets

powered on and off regularly and can cause data corruption and to avoid filling up

the SD card too quickly with video.
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Chapter 4

Results and Conclusions

4.1 Test Set up

Due to limited project time and poor frame rate performance, YOLO was not

tried with a custom model. We selected both the better performing EfficientDet

and MobileNet for the comparison. The model testing was done on a Raspberry Pi

Zero 2W running Bullseye 11 0222-04-04. There was no fan running on the CPU

during the testing but a cool down period between testing the different models was

given in order that each test be fair. For the results of the frames per second (FPS),

CPU usage, and RAM usage parameters, the Pi OS was turned off in order to allow

for as much CPU power put towards the model as possible. Each test was run for 2

minutes and both the average or the max value was gathered. During testing of the

models both were converted to TFLite models and run in the same python program,

with the only difference being the model used.

4.2 Results

There was not a GUI displaying images in order to evaluate maximum model

performance. To calculate the average fps for each test, the total fps for the entire

execution time were added together and then divided by the amount of readings

that were gathered. Next, the CPU usage was collected, using the htop command
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Table 4.1: FPS Results(FPS)

Run1 Run2 Run3 Average
EfficientDet 1.1 1.08 .95 1.04
MobileNet V1 3.42 2.86 3.12 3.13

which visualized the total CPU usage as well as the usage of each CPU core on the

pi. The two models had different tolls on the CPU cores. The MobileNet model used

all available cores, resulting in a higher over-all CPU usage average. However, when

running the EfficientDet model it was noticed that only one core at a time would

get to 96% usage while the other cores were around 84% usage this is something

that can be seen in figure 4.1 and figure 4.2. Because only one core had maximum

usage EfficientDet showed lower average CPU usage.

Table 4.2: CPU Usage (%)

Run1 Run2 Run3 Average
EfficientDet 85.1 89.5 89.8 88.13
MobileNet V1 96.1 95.4 95.8 95.8

Figure 4.1: CPU usage while running EfficientDet

Figure 4.2: CPU usage while running MobileNet V1

The memory usage was also taken by using htop. The results are shown below.

It should also be noted that without running any programs and just the terminal

the Pi’s memory usage is 60MB. In order compare the sizes of each model, files sizes
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Table 4.3: Memory Usage (MB)

Run1 Run2 Run3 Average
EfficientDet 149 150 153 151
MobileNet V1 142 148 148 146

were compared and recorded from Windows File Explorer.

Table 4.4: Size(KB)

Size
EfficientDet 7227
MobileNet V1 5456

To compare the accuracy of the models the Average Precision(AP) calculation

was used. This process builds the model and then using the just built model, it

is feed a set of known pre-marked images. Then the accuracy of the model in

selecting the right part of the image, as well as labeling it correctly, is evaluated.

A problem with basing the accuracy of the model on the AP was that there were

some classes of the model that were under represented. The poor accuracy of these

underrepresented classes brought down the over-all average significantly, something

that can be seen in 4.4. The results for each arrangement of the data set is shown in

table 4.5. The first column is where the first fifth of the data was used for validation,

while the remaining four-fifths of the images were used for the training. The next

column is where the second fifth of the data used for validation and remaining four-

fifths used from training, and so on. The higher the AP, the more accurate the

model identified objects. To see how the model acts in the real world it was run

Table 4.5: Accuracy(0-1)

Split 0 Split 1 Split 2 Split 3 Split 4 Average
EfficientDet .415 .415 .427 .428 .432 .4237
Mobilenet V1 .277 .255 .291 .278 .282 .2766

on a Raspberry Pi 4b this is because the Pi Zero does not have enough RAM to run
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(a) EfficientDet (b) MobileNet V1

Figure 4.3: Comparison on output from the models. Coral image taken by Georgette
Douwma ([Dou]).

Figure 4.4: Break down of model accuracy for EfficientDet

the desktop version needed to show the image output. While running EfficientDet

it was noticed that there was a some lag from what the camera was pointed at and

what the model was analyzing. Keeping in mind the programs are identical except

for what model was selected, this would mean the models should be having about

the same amount of delay. To show the lag time between the two models the results

can be seen in Table 4.6.

Table 4.6: Lag Time(s)

Run1 Run2 Run3 Test4 Test5 Average
EfficientDet 2.04 1.85 1.84 1.98 1.85 1.91
MobileNet V1 1.00 0.88 1.08 0.88 1.00 0.97
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In addition to evaluating the models additional programs were created in order

to help ease development of the underwater Raspberry Pi. This included making a

recording program that once the Pi is started up it will automatically start recording

video feed of the camera and by pressing a button will save the video as well as

shutdown the pi in order the battery can be unplugged. Additional hardware was

created in order to have some user feed back.

(a) Side view of Pi Zero (b) Close up View of the Hardware

Figure 4.5: Images of the Recording Hardware

4.2.1 Discussion

Looking over the results it shows that MobileNet preformed better compared

to EfficientDet. There are a number of results that show this, looking at the FPS

MobileNet has an average of 3.13 compared to that of 1.04 from EfficientDet. The

difference in speed is a big factor as the faster the model can process images the

more likely a new object can be detected. What also matters is how much the

images were lagging when running the EfficientDet model. In table 4.6 it shows

that there is almost twice the amount of lag compared to MobileNet. It should also

be noted that during the original testing with the EfficientDet model the FPS was

faster as well as there was no apparent lag. Meaning the demo model was possibly of

a slightly different architecture or that the transfer learning was not done correctly.

Image speed is not the only important factor for running the camera, other
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factors that are important for running the camera is the hardware tolls. Looking at

the CPU it can be seen that the EfficientDet was using the CPU less compared to

that of its competitor. The RAM usage as well as the storage were both in favor

of MobileNet as there was less RAM usage as well as the MobileNet model was

2kB less than the EfficientDet model. This could have been do to the fact that

the EfficientDet model was trained on the whole model compared to the MobileNet

model which was only trained on the last few layers.

The last factor is accuracy this was in favor of EfficientDet. It should be noted

that it was during the testing that it can be seen on how much the data set effects

the model accuracy. Looking at figure 4.4 it shows a copy of the output from

an EfficientDet model that was evaluated on the underwater dataset it shows the

over all accuracy while also showing the accuracy of the different classes. Whjat is

significant about this set of number is ythat it shows how the data determines the

overall accuracy of the model. As can be seen the fish class has .81 mAp however

some of the other classes like dead coral has an accuracy of .06, this results in a lower

overall average precision. That being said both models were trained on the same

data set, and EfficientDet had the higher over all accuracy. What should also noted

is that when running the model across multiple images EfficientDet did not identify

as many objects in the image as compared to MobileNet. MobileNet preformed

better in FPS, CPU usage, RAM usage as well as using less storage, which makes

it the better choice for this project as it fulfills more requirements of the project

compared to EfficientDet.

The additional programs also worked as expected with some added features, such

as that when a USB device is plugged into the Pi while running the program, all

the videos stored will be transferred over to the USB as well as deleted from the

Pi’s memory. This frees up space for new videos saving the need to connect the Pi
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to a monitor.
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Chapter 5

Conclusion

The project entailed creating and evaluating different models that are currently

available for the Raspberry Pi. There were four criteria for th ideal model for the

project, speed, hardware usage, storage space, and accuracy. The final goal of the

project is to run the models on a Raspberry Pi Zero 2W, with a Sony IMX477 camera

sensor. The model architectures that were chosen to be evaluated were MobileNet,

EfficientDet, and YOLO. Following the different tutorials online each model type

was evaluated to see how it preforms over as well as the Raspberry Pi 4b also has

more IO ports. It was found that both EfficientDet and the MobileNet seemed to

run at faster FPS compared to YOLO which was running at a slower speed as well

as the accuracy seemed lower resulting in it, not being further evaluated. When

training both MobileNet and EfficientDet on new classes, transfer learning was used

with cross validation in order to understand the over all accuracy of the model

architecture. In addition to the model accuracy, the CPU usage, RAM usage and

size of model was also evaluated. Once having all the data it showed that MobileNet

was the better model for the project requirements as it fulfilled 3 of the four project

requirements. In addition to doing model evaluation helper python programs were

created to make development with underwater camera easier.
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5.1 Future Work

Given more time there are a number of other improvement that can be made.

One is to compare more model architectures as comparing only two is a small number

compared to the amount available on the internet. Another improvement would be

to create a separate controller in order to help with making the interface easier.

Since this camera is meant to be used in the field it can be hard to find easy access

to a monitor and keyboard and view the model output.The controller will help to

have easier control, and to see the output of the model from an easy interface. A

good feature for the project would be to also implement on device training. This

can be helpful for adding small objects or when a computer is not near by.

5.2 Lessons Learned

Throughout the project there were a number of different things that would have

been good to know, first is that the new version of Raspberry Pi OS has it own

camera interface called Libby and that the most recent version of Pi OS has Picam-

era2 installed making the interface with the camera just as easy as before Libby.

Also knowing TensorFlow is great for beginners as it has good documentation and

makes building models very easy however, for anything more complex such as using

transfer learning for a different model beside EfficientDet, look at other solutions

online.
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