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Abstract

This thesis employs stochastic analysis tools to address three distinct problems. Firstly, in

Hybrid Linear Quadratic Gaussian (LQG) Mean Field Games (MFGs), we investigate the

convergence rate of the N -player linear quadratic Gaussian game towards its asymptotic

Mean Field Games, using an explicit coupling method. The two main results are as fol-

lows. With some assumptions, one is to characterize the Mean-Field game equilibrium path

as well as the associated equilibrium measure. The other is to obtain the convergence rate

from the N -player game to that from mean-field games in distribution. The second prob-

lem involves finding the robust relative performance maximizing portfolio in an incomplete

information setting, where the objective is to find the optimal strategy for an investor max-

imizing her/his robust utility. In the third problem, we obtain tighter right-singular vector

perturbation bounds for rectangular matrices perturbed by Gaussian random matrix noise,

by analyzing the perturbed matrix as a Dyson-Bessel matrix-valued diffusion. Applications

of the perturbation bounds include the subspace recovery problem and the rank-k matrix

approximation problem.
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1
Hybrid Linear Quadratic Gaussian Mean Field

Games

The convergence rate of equilibrium measures of N -player Games with Brownian common

noise to its asymptotic Mean Field Game system is known as O(N−1/9) with respect to 1-

Wasserstein distance, obtained by the monograph [9, Cardaliaguet, Delarue, Lasry, Lions

(2019)]. In this chapter, we study the convergence rate of the N -player LQG game with a

Markov chain common noise towards its asymptotic Mean Field Game.

The main tool relies on an explicit coupling of the optimal trajectory of the N -player game

which is driven by N -dimensional Brownian motion and the mean-field game counterpart

which is driven by one-dimensional Brownian motion. The two main results are as follows.

With some assumptions, one is to characterize the mean-field game equilibrium path X̂ as

well as associated equilibrium measure m̂. The other is to obtain the convergence rate of

(X̂
(N)
1t , Y (N)) from the N -player game to (X̂t, Y ) from mean-field games in distribution. One

extension of [34, Jian, Lai, Song, and Ye] made in this thesis is that we showed the main

results also hold when the sensitivity function h(y, t) is time dependent.

1.1 Introduction and Literature Review

The field of Mean Field Games (MFGs) has emerged as a powerful framework for modeling

strategic interactions among a large number of rational agents. Mean Field Game (MFG)

theory is intended to describe an asymptotic limit of complex N -player differential game

invariant to a reshuffling of the players’ indices, and has attracted resurgent attention from

numerous researchers in probability after its pioneering works of [39, Lasry and Lions] and

[31, Huang, Caines, and Malhame], and we refer to comprehensive descriptions to the book

[10, Carmona and Delarue] and the references therein.

In recent years, there has been a growing interest in extending traditional MFG mod-

1



1 - Hybrid Linear Quadratic Gaussian Mean Field Games

els to incorporate additional complexities, such as stochastic dynamics and hybrid control

structures. One such extension is the Hybrid Linear Quadratic Gaussian (LQG) Mean Field

Games, which combines elements of stochastic control theory with Gaussian processes to

address dynamic decision-making in uncertain environments.

we study the convergence rate of equilibrium measures of N -player differential game in

the context of a Linear-Quadratic (LQ) structure with a common noise to its limiting MFG

system. Different from the works mentioned above, the common noise in this thesis is a

continuous-time Markov chain (CTMC) instead of Brownian motion, which oftentimes models

the real-world control problems associated with hybrid systems. Markov chains are widely

used to model systems that exhibit randomness and transition between different states. In

various real-world scenarios, especially in economics (see [60]), finance ( [69]), biology ( [70]),

and engineering ([68]), the dynamics of systems can be effectively represented as discrete

states with probabilistic transitions between them.

LQ control problems have been widely recognized in the stochastic control theory due to

their broad applications. More importantly, LQ structure leads to solvability in a closed form,

namely the Ricatti system, and this usually sheds light on many fundamental properties of

the control theory. For this reason, LQ structure has also been studied in MFGs with or

without common noises for its importance. The related literature include major and minor

LQG Mean Field Games system ([29, 50, 18]); social optimal in LQG Mean Field Games

([30, 17]); the LQG Mean Field Games with different model settings ([3, 27, 4, 28]); and

LQG Graphon Mean Field Games ([20]). Recently, LQ Mean Field Games with a Brownian

motion as the common noise have also been studied in ([1, 59]) with restrictions of the

dependence of measure on its mean alone. Moreover, some literature considers various topics

of Mean Field control and game problems with Markov chain common noise, see [42, 51, 52].

A fundamental question in this regard is the convergence rate of N -player game to the

desired MFG system. A well-known result is about the convergence rate of value functions of

the generic player, which can be shown O(N−1), see for instance [8, 9, 10, 32]. In particular,

[32] establishes the convergence rate of value functions in the sense of

JN
1 (α̂1, α̂−1) ≤ JN

1 (α1, α̂−1) +O(N−1),

where JN
1 is the value of the first player in N -player game and α̂ is the Nash equilibrium

decentralized control process for the MFG problem.

On the contrary, another challenging aspect lies in determining the convergence rate of

equilibrium measures, which is complicated by the correlation structures among N players.

To be more concrete, we examine the behavior of the X̂
(N)
it , which represents the equilibrium

state of the i-th player at time t in the N -player game defined within the probability space(
Ω(N),F (N),F(N),P(N)

)
. Additionally, we denote X̂t as the equilibrium path at time t derived

from the associated MFG defined in the probability space (Ω,F ,F,P). The question pertains

to the convergence of X̂
(N)
1t as follows:

2



1.1 - Introduction and Literature Review

(Q) The Wp-convergence rate of the representative equilibrium path,

Wp

Ä
L
Ä
X̂

(N)
1t

ä
,L
Ä
X̂t

ää
= O

(
N−?

)
.

Here, Wp denotes the p-Wasserstein metric.

The existing literature extensively explores the convergence rate in this context. For

(Q), Theorem 2.4.9 of the monograph [9] establishes a convergence rate of O(N−1/2) using

the W1 metric. More recently, [33] addresses (Q) by introducing displacement monotonicity

and controlled common noise, and Theorem 2.23 applies the maximum principle of forward-

backward propagation of chaos to achieve the same convergence rate. It is important to note

that these results are not applicable to the Linear Quadratic Gaussian (LQG) framework,

primarily due to the assumption concerning the linear growth of the cost functional.

The main result of this chapter establishes that the equilibrium measures exhibit a con-

vergence rate of 1/2 concerning the 2-Wasserstein distance. The precise statement of this

result can be found in Theorem 1.2.2. In comparison to the aforementioned literature, two

primary distinctions emerge. Firstly, within the framework of Mean Field Games, the com-

mon noise is modeled as a Continuous-Time Markov Chain. Secondly, a significant difference

lies in the cost function’s behavior, as it does not possess linear growth within the context of

the Linear Quadratic Gaussian (LQG) framework.

To obtain the desired convergence rate in this chapter, the first building block is the

characterization of the equilibrium measure of the limiting MFG by a finite-dimensional

ODE system. The key step leading us to a desired finite-dimensional system is that, instead

of searching for the infinite-dimensional function directly, we postulate a Markovian structure

via auxiliary processes (1.15) governed by its finite-dimensional coefficient functions, which

exhibits the distinct feature of Markov chain common noise relatives to the Brownian motion

counterpart.

The next stage towards the convergence rate is to compare the limiting MFG system to a

N -player game. In contrast to the characterization of the MFG system, it is relatively routine

to solve the N -player game due to its LQ structure. Therefore, the convergence rate problem

can be recasted to the following question about the coupling of the two following processes:

For two equilibrium processes X̂ of MFG in Ω and X̂
(N)
1 of N -player game in Ω(N), finding a

random process ZN in Ω whose distribution is identical to X̂
(N)
1 satisfying the estimate in the

form of E[|X̂t − ZN
t |2] = O

(
N−?

)
. For this purpose, we first show an N -invariant algebraic

structure of the seemingly intractable κN3 dimensional ODE system (1.27), which originated

from [32, Huang and Yang] as a dimensional reduction in the system with Brownian common

noise. Thanks to this N -invariant structure, the complex ODE system (1.27) can be reduced

to the ODE system (1.31) whose dimension agrees with the ODE (1.12) of MFG system.

Moreover, X̂
(N)
1 can be represented as a stochastic flow driven by two Brownian motions

W
(N)
1 and W

(N)
−1 := 1√

N−1

∑N
i=2W

(N)
i , which enables us to embed the equilibrium process

X̂
(N)
1 to any probability space having only two Brownian motions.

3



1 - Hybrid Linear Quadratic Gaussian Mean Field Games

1.1.1 Outline

The rest of this chapter is outlined as follows: Section 1.2 presents a precise formulation

of the problem and two main results. Section 1.3 is devoted to the derivation of our first

result: the equilibrium of MFGs. In Section 1.4, we show in detail the convergence of the

N -player game to MFGs, which yields our second main result. Section 1.5 demonstrates the

convergence by some numerical simulations. The conclusion and some potential future works

are summarized in Section 1.6. Appendix A.1 - A.5 are the appendixes that collect some

related facts to support the main proof.

1.2 Problem Setup

First, we collect common notations used in this chapter in Subsection 1.2.1. Then, we set up

problems on MFGs and the N -player game separately in Subsection 1.2.2. We present our

main results with time-dependent sensitivity h(y, t) in Subsection 1.2.3. In Subsection 1.2.4

we discuss some remarks on the main results.

1.2.1 Notations

Let T > 0 be a fixed terminal time and (Ω,FT ,F = {Ft : 0 ≤ t ≤ T},P) be a completed

filtered probability space satisfying the usual conditions, on which W and B are two inde-

pendent standard Brownian motions, and Y is a continuous time Markov chain (CTMC)

independent of (W,B) taking values in a finite state space Y = {1, 2, . . . , κ} with a generator

Q = (qi,j)i,j∈Y (1.1)

satisfying qi,j ≥ 0 for all i ̸= j ∈ Y and
∑

i ̸=j qi,j + qi,i = 0 for each i ∈ Y . In the above, the

Brownian motion B does not play any role in MFG problem formulation until the convergence

proof of the N -player game to MFGs.

By Lp := Lp(Ω,P), we denote the space of random variables X on (Ω,FT ,P) with finite

p-th moment with norm ∥X∥p = (E [|X|p])1/p. We also denote by Lp
F := Lp

F([0, T ] × Ω) the

space of all F-progressively measurable random processes α = (αt)0≤t≤T satisfying

E
ñ∫ T

0

|αt|pdt
ô
<∞.

For any polish (complete separable metric) space (P,B(P ), d), we use δx to denote the

Dirac measure on the point x ∈ P . Then, the collection of all probabilities m on (P,B(P ), d)
having finite k-th moment is denoted by Pk(P ), i.e.

[m]k :=

∫
xkm(dx) <∞, ∀m ∈ Pk(P ).

4



1.2 - Problem Setup

The equilibrium of MFGs with the common noise yields the conditional distribution.

For real-valued random variables X and Z in (Ω,FT ,P), we denote the distribution of X

conditional on σ(Z) by L(X|Z), or equivalently

L(X|Z)(A) = E[IA(X)|Z], ∀A ∈ FT .

Note that L(X|Z)(A) : Ω 7→ R is a σ(Z)-measurable random variable, therefore, L(X|Z) is
σ(Z)-measurable random probability distribution with k-th moment [L(X|Z)]k = E[Xk|Z],
if it exists. We refer to more details on the conditional distribution in Volume II of [10].

Next proposition provides an embedding approach to prove the convergence in distribu-

tion, which will be used later in the convergence of the N -player game to MFGs.

Proposition 1.2.1 (Convergence in distribution). Suppose (Ω(N),F (N)
T ,P(N)) is a complete

probability space. Let X(N) and X be random variables of Ω(N) 7→ P and Ω 7→ P , respectively.

Then, X(N) is convergent in distribution to X, denoted by X(N) ⇒ X, if there exists ZN :

Ω 7→ P satisfying L(ZN) = L(X(N)), such that ZN → X holds almost surely, i.e.

lim
N→∞

d(ZN , X) = 0, almost surely in P,

where d represents the metric assigned to the space P .

In this chapter, we formulate the N -player game in the completed filtered probability

space

(Ω(N),F (N)
T ,F(N) := {F (N)

t : 0 ≤ t ≤ T},P(N)),

and Y (N) is the continuous time Markov chain in Ω(N) with the same generator given by

(1.1) and W (N) = (W
(N)
i : i = 1, . . . , N) is an N -dimensional standard Brownian motion.

We assume Y (N) and W (N) are independent of each other.

For better clarity, we use the superscript (N) for a random variable to emphasize the

probability space Ω(N) it belongs to. For example, Proposition 1.2.1 denotes a random

variable in Ω(N) by X(N), while its distribution copy in Ω by ZN , not by Z(N).

1.2.2 Definitions

The equilibrium of MFGs

In this subsection, we define the equilibrium of MFGs associated with a generic player’s

stochastic control problem in the probability setting Ω, see Section 1.2.1.

Given a random measure flow m : (0, T ] × Ω 7→ P2(R), consider a generic player who

wants to minimize her expected accumulated cost on [0, T ]:

J(y, x, α) = E
ñ∫ T

0

1

2
α2
s + F (Ys, Xs, s,ms)ds+G(YT , XT ,mT )

∣∣∣Y0 = y,X0 = x

ô
(1.2)

5



1 - Hybrid Linear Quadratic Gaussian Mean Field Games

with some given cost functions F : Y ×R× [0, T ]×P2(R) 7→ R, G : Y ×R×P2(R) 7→ R and

underlying random processes (Y,X) : [0, T ]×Ω 7→ Y ×R. Among three processes (Y,X,m),

the generic player can control the process X via α in the form of

Xt = X0 +

∫ t

0

Ä
b̃1(Ys, s)Xs + b̃2(Ys, s)αs

ä
ds+Wt, ∀t ∈ [0, T ], (1.3)

where b̃1(·, ·) and b̃2(·, ·) are two deterministic functions. We assume that the initial state X0

is independent of Y . The process Y of (1.1) represents the common noise and m = (mt)0≤t≤T

is a given random density flow normalized up to total mass one.

The objective of the control problem for the generic player is to find its optimal control

α̂ ∈ A := L4
F to minimize the total cost, i.e.

V [m](y, x) = J [m](y, x, α̂) ≤ J [m](y, x, α), ∀α ∈ A. (1.4)

Associated to the optimal control α̂, we denote the optimal path by X̂ = (X̂t)0≤t≤T . To

introduce MFG Nash equilibrium, it is often convenient to highlight the dependence of the

optimal path and optimal control of the generic player and its associated value on the un-

derlying density flow m, which are respectively denoted by

X̂t[m], α̂t[m], and V [m].

Now, we present the definition of the equilibrium below, see also Volume II page 127 of

[10] for a general setup with a common noise.

Definition 1.2.1 (MFG equilibrium measure, equilibrium path and equilibrium control).

Given an initial distribution L(X0) = m0 ∈ P2(R), a random measure flow m̂ = m̂(m0) is

said to be an MFG equilibrium measure if it satisfies the fixed point condition

m̂t = L(X̂t[m̂]|Y ), ∀0 < t ≤ T, almost surely in P. (1.5)

The path X̂ and the control α̂ associated to m̂ is called the MFG equilibrium path and equi-

librium control, respectively. The value function of the control problem associated with the

equilibrium measure m̂ is called as MFG value function, denoted by

U(m0, y, x) = V [m̂](y, x). (1.6)

The flowchart of MFGs diagram is given in Figure 1.1. It is noted from the optimality

condition (1.4) and the fixed point condition (1.5) that

J [m̂](y, x, α̂) ≤ J [m̂](y, x, α), ∀α

6
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Figure 1.1: MFGs diagram: infinite-dimensional fixed point condition with m0

holds for the equilibrium measure m̂ and its associated equilibrium control α̂, while it is not

J [m̂](y, x, α̂) ≤ J [m](y, x, α), ∀α,m.

Otherwise, this problem turns into a McKean-Vlasov control problem discussed in [51].

Equilibrium of the N-player game

The discrete counterpart of MFGs is an N -player game, which is formulated below in the

probability space Ω(N), see Section 1.2.1 for more details on the probability setup.

Recall that,W
(N)
it andW

(N)
jt are independent Brownian motions for j ̸= i and the common

noise Y (N) is the continuous time Markov chain in Ω(N) with the generator given by (1.1).

Let the player i follow the dynamic, for i = 1, 2, . . . , N ,

dX
(N)
it =

Ä
b̃1(Y

(N)
t , t)X

(N)
it + b̃2(Y

(N)
t , t)α

(N)
it

ä
dt+ dW

(N)
it , X

(N)
i0 = x

(N)
i . (1.7)

The cost function for player i associated to the control α(N) = (α
(N)
i : i = 1, 2, . . . , N) is

JN
i (y, x(N), α(N)) = E

ñ∫ T

0

Å
1

2
|α(N)

it |2 + F (Y
(N)
t , X

(N)
it , t, ρ(X

(N)
t ))

ã
dt+

G(Y
(N)
T , X

(N)
iT , ρ(X

(N)
T ))

∣∣∣X(N)
0 = x(N), Y

(N)
0 = y

]
,

(1.8)

where x(N) = (x
(N)
1 , x

(N)
2 , . . . , x

(N)
N ) is an RN -valued random vector in Ω(N) to denote the

initial state for N player, α
(N)
i ∈ A(N) := L4

F(N) , and

ρ(x(N)) =
1

N

N∑
i=1

δ
x
(N)
i

7



1 - Hybrid Linear Quadratic Gaussian Mean Field Games

is the empirical measure of a vector x(N) with Dirac measure δ. We use the notation for the

control α(N) = (α
(N)
i , α

(N)
−i ) = (α

(N)
1 , α

(N)
2 , . . . , α

(N)
N ).

Definition 1.2.2 (Equilibrium condition and equilibrium path of N -player game).

1. The value function of player i for i = 1, 2, . . . , N of the Nash game is defined by

V N = (V N
i : i = 1, 2, . . . , N) satisfying the equilibrium condition

V N
i (y, x(N)) = JN

i (y, x(N), α̂
(N)
i , α̂

(N)
−i ) ≤ JN

i (y, x(N), α
(N)
i , α̂

(N)
−i ), ∀α(N)

i ∈ A(N).

(1.9)

2. The equilibrium path of the N-player game is the random path X̂
(N)
t = (X̂

(N)
1t , . . . , X̂

(N)
Nt )

driven by (1.7) associated to the control α̂
(N)
t satisfying the equilibrium condition of

(1.9).

1.2.3 Main result with time-dependent sensitivity h(y, t)

We consider the following two functions F : Y×R×[0, T ]×P2(R) 7→ R, G : Y×R×P2(R) 7→ R
in the cost functional (1.2):

F (y, x, t,m) = h(y, t)

∫
R
(x− z)2m(dz), (1.10)

and

G(y, x,m) = g(y)

∫
R
(x− z)2m(dz), (1.11)

for some h : Y × [0, T ] 7→ R+, g : Y 7→ R+. Note that the cost function F is a function of

time variable t which is an extension of the cost function F in [34, Jian, Lai, Song, and Ye].

In this case, the F and G terms in (1.8) of the N -player game can be written by

F (Y
(N)
t , X

(N)
it , t, ρ(X

(N)
t )) =

h(Y
(N)
t , t)

N

N∑
j=1

(X
(N)
it −X

(N)
jt )2,

and

G(Y
(N)
T , X

(N)
iT , ρ(X

(N)
T )) =

g(Y
(N)
T )

N

N∑
j=1

(X
(N)
iT −X

(N)
jT )2,

respectively.

Remark 1.2.1. First, we note that F and G possess the quadratic structures in x. Secondly,

the coefficients h(y, t) and g(y) provide the sensitivity to the mean-field effects, which depend

on the current CTMC state. For another remark, let us consider the scenario where the

number of states is 2 and sensitivities are invariant, for instance

h(0, t) = h(1, t) = h, g(0) = g(1) = 0.

8
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Then the cost function and hence the entire problem is free from the common noise. Inter-

estingly, as shown in the Appendix A.1, there is no global solution for MFGs when h < 0,

while there is a global solution when h > 0.

Moreover, the uniqueness of the MFGs can be achieved under the displacement mono-

tonicity condition. It is easy to check that (1.10)-(1.11) satisfy the displacement monotonicity

condition. Note that

Fx(y, x, t,m) = 2h(y, t)(x− [m]1), Gx(y, x,m) = 2g(y)(x− [m]1),

which gives that

E [(Fx(y,X1, t,mX1)− Fx(y,X2, t,mX2)) (X1 −X2)] =

2h(y, t)
Ä
E
î
(X1 −X2)

2
ó
− (E[X1]− E[X2])

2
ä
≥ 0

for all y ∈ Y if h(y, t) > 0 on Y, where mX1 and mX2 is the law of X1 and X2 respectively.

Similarly, we can obtain that

E [(Gx(y,X1,mX1)−Gx(y,X2,mX2)) (X1 −X2)] ≥ 0

for all y ∈ Y if g(y) > 0 on Y. Therefore, we require positive values for all sensitivities

for simplicity. It is of course an interesting problem to investigate the explosion when some

sensitivities are negative.

Wrapping up the above discussions, we impose the following assumptions.

Assumption 1.2.1 (b̃1, b̃2, h, g,X0).

(A0) b̃1(y, ·), b̃2(y, ·), h(y, ·) : [0, T ] 7→ R are continuous functions for all y ∈ Y.

(A1) The cost functions are given by (1.10)-(1.11) with h, g > 0; The initial X0 of MFGs

satisfies E[X2
0 ] <∞.

(A2) In addition to (A1), the initial x(N) = (x
(N)
1 , x

(N)
2 , . . . , x

(N)
N ) of the N-player game is a

vector of i.i.d. random variables in Ω(N) with the same distribution as the initial L(X0)

of MFG.

Our objective of this chapter is to understand the Nash equilibrium of MFGs and its

connection to the N -player game equilibrium:

(P1) With Assumption (A0),(A1), and (A2), obtain the convergence rate of (X̂
(N)
1t , Y (N))

from the N -player game of Definition 1.2.2 to (X̂t, Y ) from MFGs of Definition 1.2.1

in distribution.

To answer (P1), it is critical to have a solid understanding of the joint distribution (X̂t, Y )

for the underlying MFG, which yields another question:

9



1 - Hybrid Linear Quadratic Gaussian Mean Field Games

(P2) With Assumption (A0) and (A1), characterize the MFG equilibrium path X̂, as well

as associated equilibrium measure m̂ along the Definition 1.2.1.

For the main result, we first answer (P2) via the following Riccati system for unknowns

(ay, by, cy, ky : y ∈ Y):

a′y(t) + 2b̃1y(t)ay(t)− 2b̃22y(t)a
2
y(t) +

κ∑
i=1

qy,iai(t) + hy(t) = 0,

b′y(t) +
Ä
2b̃1y(t)− 4b̃22y(t)ay(t)

ä
by(t) +

κ∑
i=1

qy,ibi(t) + hy(t) = 0,

c′y(t) + ay(t) + by(t) +
κ∑

i=1

qy,ici(t) = 0,

k′y(t)− 2b̃22y(t)a
2
y(t) + 4b̃22y(t)ay(t)by(t) + 2b̃1y(t)ky(t) +

κ∑
i=1

qy,iki(t) = 0,

ay(T ) = by(T ) = gy , cy(T ) = ky(T ) = 0,

(1.12)

where hy(t) = h(y, t), gy = g(y) for y ∈ Y .

Theorem 1.2.1 (MFG equilibrium). Under assumptions (A0)-(A1), there exists a unique

solution (ay, by, cy, ky : y ∈ Y) to the Riccati system (1.12). With these solutions, the MFG

equilibrium path X̂ = X̂[m̂] is given by

dX̂t =
Ä
b̃1(Yt, t)X̂t − 2b̃22(Yt, t)aYt(t)

Ä
X̂t − µ̂t

ää
dt+ dWt, X̂0 = X0, (1.13)

with equilibrium control

α̂t = −2b̃2(Yt, t)aYt(t)
Ä
X̂t − µ̂t

ä
, (1.14)

where

dµ̂t = b̃1(Yt, t)µ̂tdt, µ̂0 = E[X0].

Moreover, the value function U is

U(m0, y, x) = ay(0)x
2−2ay(0)x[m0]1 + ky(0)[m0]

2
1 + by(0)[m0]2 + cy(0), y ∈ Y .

Theorem 1.2.2 (Convergence rate). Under assumptions (A0)-(A1)-(A2), the joint law

(X̂
(N)
1t , Y

(N)
t ) of the N-player game converges in distribution to that of the MFG equilibrium

(X̂t, Yt) for any t ∈ (0, T ] at the convergence rate

W2

Ä
L(X̂(N)

1t , Y
(N)
t ),L(X̂t, Yt)

ä
= O
Ä
N− 1

2

ä
, as N → ∞.

1.2.4 Remarks on the main results

One can interpret the main results in plain words: For N -player game with dynamic (1.7)

and cost structure (1.8) for large N , the equilibrium control of the generic player can be

10
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effectively approximated by steering itself toward the population center µ̂t depending only

on the function b̃1(·, ·) and the entire past of the common noise, whose velocity is dependent

on only the function b̃2(·, ·) and the entire past of the common noise. The effectiveness can

be quantified by the convergence rate of 1/2 for the one-dimensional Mean Field Game under

LQ structure and CTMC common noise. A natural question is whether the convergence rate

can be generalized to more general settings.

This chapter focuses on the one-dimensional problem to avoid unnecessary symbol com-

plexity. Therefore, the main convergence rate 1/2 still holds for multidimensional problems

using the same coupling procedure. For convenience to check, we summarized the computa-

tion involved in multidimensional problems in the Appendix A.5.

The current coupling procedure can also be adapted with suitable modifications to the

LQ Mean Field Game problem with Brownian common noise, see [35]. In particular, the

reduction of the O(N3)-dimensional ODE can be conducted similarly and the convergence

rate is still maintained as 1/2. However, the dependence of the mean and variance process

on the common noise and subsequent calculations are significantly different from the current

chapter, see Definition 4 of [35] for more details.

Indeed, choosing the CTMC common noise instead of Brownian motion does not simplify

the underlying problem, since it preserves the path-dependence feature of the equilibrium

measure. On the contrary, the advantage of CTMC common noise is that the applications

aim to model less frequently changing environment settings, such as government policies

implemented by multiple different regimes. Due to its realistic applications, stochastic control

theory perturbed by CTMC is extensively studied in the context of hybrid control problems,

see books [45, 65] and the references therein.

We close this chapter with a remark on the uniqueness. The uniqueness of Mean Field

Game can be achieved under Lasry-Lions monotonicity [39] or displacement monotonicity [19]

and our setting in Section 1.2.2 satisfies the displacement monotonicity. Thus the convergence

of Theorem 1.2.2 implies that the unique equilibrium path of N -player game converges to

the unique equilibrium path of the limiting MFG, which is characterized by Theorem 1.2.1.

1.3 Main Result of MFG problem

This section is devoted to the proof of the first main result Theorem 1.2.1 on the MFG

solution. First, we outline the scheme based on the Markovian structure of the equilibrium

by reformulating the MFG problem in Subsection 1.3.1. Next, we solve the underlying

control problem in Subsection 1.3.2 and provide the corresponding Riccati system. Finally,

Subsection 1.3.3 proves Theorem 1.2.1 by checking the fixed point condition of MFG problem.

1.3.1 Overview

By Definition 1.2.2, to solve for the equilibrium measure, one shall search the infinite-

dimensional space of the random measure flows m : (0, T ] × Ω 7→ P2(R) until a measure

11



1 - Hybrid Linear Quadratic Gaussian Mean Field Games

flow satisfies the fixed point condition mt = L(X̂t|Y ),∀t ∈ (0, T ], see Figure 1.1, which

requires to check the following infinitely many conditions:

[mt]k = E[X̂k
t |Y ], ∀k = 1, 2, . . . ,

if they exist.

The first observation is that the cost functions F and G in (1.10)-(1.11) are dependent

on the measure m only via the first two moments:

F (y, x, t,m) = h(y, t)(x2 − 2x[m]1 + [m]2),

G(y, x,m) = g(y)(x2 − 2x[m]1 + [m]2).

Therefore, the underlying stochastic control problem for MFGs can be entirely determined

by the input given by R2 valued random process µt = [mt]1 and νt = [mt]2, which implies

that the fixed point condition can be effectively reduced to check two conditions only:

µt = E[X̂t|Y ], νt = E[X̂2
t |Y ].

This observation effectively reduces our search from the space of random measure-valued

processes m : (0, T ] × Ω 7→ P2(R) to the space of R2-valued random processes (µ, ν) :

(0, T ]× Ω 7→ R2.

Note that, if underlying MFGs have no common noise Y , then (µ, ν) is a deterministic

mapping [0, T ] 7→ R2 and the above observation is enough to reduce the original infinite-

dimensional MFGs into a finite-dimensional system. However, the following example shows

that this is not the case for MFGs with a common noise and it becomes the main drawback

to characterizing MFGs via a finite-dimensional system.

Example 1.3.1. To illustrate, we consider the following uncontrolled mean field dynamics.

Let the mean field term µt := E[X̂t|Y ], where the underlying dynamic is given by

dX̂t = −µtYtdt+ dWt.

• µt is path dependent on Y , i.e.

µt = µ0 exp
{
−
∫ t

0

Ysds
}
.

This implies that no finite-dimensional system is possible to characterize the process µt,

since the (t, Y ) 7→ µt is a function on an infinite dimensional domain.

• µt is Markovian, i.e.

dµt = −Ytµtdt.

It might be possible to characterize µt via a function (t, Yt, µt) 7→ dµt

dt
on a finite dimen-

sional domain.

12
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To solidify the above idea, we need to postulate the Markovian structure for the first

and second moments of the MFG equilibrium. More precisely, our search for the equilibrium

will be confined to the space M of measure flows whose first and second moment exhibits

Markovian structure.

Definition 1.3.1 (Confined searching space M). The space M is the collection of all FY
t -

adapted measure flows m : [0, T ] × Ω 7→ P2(R), whose first moment [mt]1 := µt and second

moment [mt]2 := νt satisfy

µt = µ0 +

∫ t

0

(w0(Ys, s)µs + w1(Ys, s)) ds,

νt = ν0 +

∫ t

0

(
w2(Ys, s)µs + w3(Ys, s)νs + w4(Ys, s)µ

2
s + w5(Ys, s)

)
ds,

(1.15)

for all t ∈ [0, T ] and for some smooth deterministic functions (wi : i = 0, 1, . . . , 5).

Figure 1.2: Equivalent MFGs diagram: finite dimensional fixed point condition with µ0 =
[m0]1 and ν0 = [m0]2.

The flowchart for our equilibrium is depicted in Figure 1.2. Subsection 1.3.2 covers the

derivation of the Riccati system for the LQG system with a given population measure flow

m ∈ M, which provides the key building block to MFGs. In Subsection 1.3.3, we check the

fixed point condition and provide a finite-dimensional characterization of MFGs, which gives

the first main result Theorem 1.2.1.

1.3.2 Generic player’s control problem given a population measure

The advantage of the generic player’s control problem associated with m ∈ M is that its

optimal path can be characterized via the following classical stochastic control problem:

13
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• (P3) Given smooth functions w = (wi : i = 0, 1, . . . , 5), find the optimal value V̄ = V̄ [w]

V̄ (y, x, t, µ̄, v̄) = inf
α∈A

E
ñ∫ T

t

Å
1

2
α2
s + F̄ (Ys, Xs, s, µs, νs)

ã
ds

+Ḡ(YT , XT , µT , νT )
∣∣Yt = y,Xt = x, µt = µ̄, νt = ν̄

]
underlying R4-valued processes (Y,X, µ, ν) defined through (1.1)-(1.3)-(1.15) with the

finite dimensional cost functions: F̄ : R2 × [0, T ]× R2 7→ R, Ḡ : R4 7→ R given by

F̄ (y, x, t, µ̄, ν̄) = h(y, t)(x2 − 2xµ̄+ ν̄),

Ḡ(y, x, µ̄, ν̄) = g(y)(x2 − 2xµ̄+ ν̄),

where µ̄, ν̄ are scalars, while µ, ν are used as processes.

Lemma 1.3.1. Given m ∈ M associated with w = (wi : i = 0, 1, . . . , 5), the player’s value

(1.4) under assumption (A1) is

U [m0](y, x) = V̄ (y, x, 0, [m0]1, [m0]2),

and the optimal control has a feedback form

α̂t = ᾱ(Yt, Xt, t, µt, νt)

underlying the processes (Y,X, µ, ν) defined through (1.1)-(1.3)-(1.15), whenever there exists

a feedback optimal control ᾱ for the problem (P3).

Proof. Due to the quadratic cost structure in (1.10)-(1.11), we have enough regularity to all

concerned value functions, and the details are omitted.

Next, we turn to the solution to the control problem (P3).

HJB equation

For the simplicity of notations, for each i ∈ {0, 1, 2, 3, 4, 5} and y ∈ Y , denote the function

(x, t, µ̄, ν̄) 7→ v(y, x, t, µ̄, ν̄) as vy, and denote t 7→ wi(y, t) as wiy. We apply similar notations

for other functions whenever they have a variable y ∈ Y . Formally, under enough regularity

conditions, the value function V̄ defined in (P3) is the solution v of the following coupled

HJBs
∂tvy + b̃1yx∂xvy −

1

2

Ä
b̃2y∂xvy

ä2
+

1

2
∂xxvy + ∂µvy (w0yµ̄+ w1y)+

∂νvy
(
w2yµ̄+ w3yν̄ + w4yµ̄

2 + w5y

)
+

κ∑
i=1

qy,ivi + F̄y = 0,

vy(x, T, µT , νT ) = Ḡy(x, µT , νT ), y ∈ Y .

(1.16)
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Furthermore, the optimal control has to admit the feedback form of

α̂(t) = −b̃2(Yt, t)∂xv(Yt, X̂t, t, µt, νt). (1.17)

Next, we identify what conditions are needed for equating the control problem (P3) and HJB

equation. Denote

S =

v ∈ C∞ :

(1 + |x|2)−1(|v|+ |∂tv|)+
(1 + |x|)−1(|∂xv|+ |∂µv|+ |∂νv|) + |∂xxv| < K,

∀(y, x, t, µ, ν), for some K

 .

Lemma 1.3.2 (Verification theorem). Consider the control problem (P3) with some given

smooth functions w. Suppose there exists a solution v ∈ S of (1.16). Then, vy(x, t, µ̄, ν̄) =

V̄ (y, x, t, µ̄, ν̄) holds, and an optimal control is provided by (1.17).

Proof. We first prove the verification theorem. Since v ∈ S, for any admissible α ∈ L4
F, the

process Xα is well defined and one can use Dynkin’s formula given by Lemma A.2.1 to write

E [v(YT , XT , T, µT , νT )] = v(y, x, t, µ̄, ν̄) + E
ñ∫ T

t

Gα(s)v(Ys, Xs, s, µs, νs)ds

ô
,

where

Gaf(y, x, s, µ̄, ν̄) =

Å
∂t +

Ä
b̃1yx+ b̃2ya

ä
∂x +

1

2
∂xx +Q+ (w0yµ̄+ w1y) ∂µ̄+(

w2yµ̄+ w3yν̄ + w4yµ̄
2 + w5y

)
∂ν̄
)
f(y, x, s, µ̄, ν̄).

Note that HJB actually implies that

inf
a

ß
Gav +

1

2
a2
™
= −F̄ ,

which again implies

−Gav ≤ 1

2
a2 + F̄ .

Hence, we obtain that for all α ∈ L4
F,

v(y, x, t, µ̄, ν̄)

= E
ñ∫ T

t

−Gα(s)v(Ys, Xs, s, µs, νs)ds

ô
+ E [v(YT , XT , T, µT , νT )]

≤ E
ñ∫ T

t

Å
1

2
α2(s) + F̄ (Ys, Xs, s, µs, νs)

ã
ds

ô
+ E

[
Ḡ(YT , XT , µT , νT )

]
= J(y, x, t, α, µ̄, ν̄).

In the above, if α is replaced by α̂ given by the feedback form (1.17), then since ∂xv is
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1 - Hybrid Linear Quadratic Gaussian Mean Field Games

Lipschitz continuous in x, there exists corresponding optimal path X̂ ∈ L4
F. Thus, α̂ is also

in L4
F. One can repeat all above steps by replacing X and α by X̂ and α̂, and ≤ sign by =

sign to conclude that v is indeed the optimal value.

LQG solution

Note that, the costs F̄ and Ḡ of (P3) are quadratic functions in (x, µ̄, ν̄), while the drift

function of the process ν of (1.15) is not linear in (x, µ̄, ν̄). Therefore, the control problem

(P3) does not fall into the standard LQG control framework. Nevertheless, similar to the

LQG solution, we guess the value function as a quadratic function in the form of

vy(x, t, µ̄, ν̄) =ay(t)x
2 + dy(t)x+ ey(t)µ̄+ fy(t)xµ̄+ ky(t)µ̄

2 + by(t)ν̄ + cy(t), y ∈ Y .
(1.18)

With the above setup, for t ∈ [0, T ], the optimal control is

α̂t = −b̃2(Yt, t)∂xv(Yt, X̂t, t, µt, νt) = −b̃2(Yt, t)
Ä
2aYt(t)X̂t + dYt(t) + fYt(t)µt

ä
, (1.19)

and the optimal path X̂ is

dX̂t =
Ä
b̃1(Yt, t)X̂t − b̃22(Yt, t)

Ä
2aYt(t)X̂t + dYt(t) + fYt(t)µt

ää
dt+ dWt. (1.20)

Denote the following ODE systems for y ∈ Y ,

a′y(t) + 2b̃1y(t)ay(t)− 2b̃22y(t)a
2
y(t) +

κ∑
i=1

qy,iai(t) + hy(t) = 0,

d′y(t) + b̃1y(t)dy(t)− 2b̃22y(t)ay(t)dy(t) + fy(t)w1y(t) +
κ∑

i=1

qy,idi(t) = 0,

e′y(t)− b̃22y(t)dy(t)fy(t) + 2ky(t)w1y(t) + ey(t)w0y(t) + by(t)w2y(t)+∑κ
i=1 qy,iei(t) = 0,

f ′
y(t) + b̃1y(t)fy(t)− 2b̃22y(t)ay(t)fy(t) + fy(t)w0y(t) +

κ∑
i=1

qy,ifi(t)− 2hy(t) = 0,

k′y(t)−
1

2
b̃22y(t)f

2
y (t) + 2ky(t)w0y(t) + by(t)w4y(t) +

κ∑
i=1

qy,iki(t) = 0,

b′y(t) + by(t)w3y(t) +
κ∑

i=1

qy,ibi(t) + hy(t) = 0,

c′y(t) + ay(t)−
1

2
b̃22yd

2
y(t) + ey(t)w1y + by(t)w5y +

κ∑
i=1

qy,ici(t) = 0,

(1.21)
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1.3 - Main Result of MFG problem

with terminal conditions

ay(T ) = gy, by(T ) = gy, cy(T ) = 0, dy(T ) = 0, ey(T ) = 0, fy(T ) = −2gy, ky(T ) = 0.

(1.22)

Lemma 1.3.3. Suppose there exists a unique solution (ay, by, cy, dy, ey, fy, ky : y ∈ Y) to the

ODE system (1.21)-(1.22) on [0, T ]. Then the value function of (P3) is

V̄ (y, x, t, µ̄, ν̄) = vy(x, t, µ̄, ν̄)

= ay(t)x
2 + dy(t)x+ ey(t)µ̄+ fy(t)xµ̄+ ky(t)µ̄

2 + by(t)ν̄ + cy(t)
(1.23)

for y ∈ Y and the optimal control and optimal path are given by (1.19) and (1.20), respec-

tively.

Proof. With the form of value function vy given in (1.18) and the first and second moment

of the conditional population density given in (1.15), we have

∂tvy = a′y(t)x
2 + d′y(t)x+ e′y(t)µ̄+ f ′

y(t)xµ̄+ k′y(t)µ̄
2 + b′y(t)ν̄ + c′y(t),

∂xvy = 2xay(t) + dy(t) + fy(t)µ̄,

∂xxvy = 2ay(t),

∂µ̄vy = ey(t) + fy(t)x+ 2ky(t)µ̄,

∂ν̄vy = by(t),

for y ∈ Y . Plugging them back to the coupled HJBs in (1.16), we get a system of ODEs in

(1.21) by equating x, µ̄, ν̄-like terms in each equation.

Therefore, any solution (ay, by, cy, dy, ey, fy, ky : y ∈ Y) of ODE system (1.21) leads to

the solution of HJB (1.16) in the form of the quadratic function given by (1.23). Since the

(ay, by, cy, dy, ey, fy, ky : y ∈ Y) are differentiable functions on the closed set [0, T ], they are

also bounded, and the function v meets regularity conditions required by Lemma 1.3.2 to

conclude the desired result.

1.3.3 Proof of Main Theorem 1.2.1

Going back to the ODE system (1.21), there are 7κ equations, while we have total 13κ

deterministic functions of [0, T ]× R to be determined to characterize MFGs. Those are

(ay, by, cy, dy, ey, fy, ky : y ∈ Y) and (wiy : i = 0, 1, . . . 5, y ∈ Y).

In the following, we identify the missing 6κ equations by checking the fixed point condition:

µs = E
[
X̂s

∣∣∣Y ] , νs = E
[
X̂2

s

∣∣∣Y ] , ∀s ∈ [0, T ], (1.24)

17



1 - Hybrid Linear Quadratic Gaussian Mean Field Games

where µ and ν are two auxiliary processes (µ, ν)[w] defined in (1.15), see Figure 1.2. This

leads to a complete characterization of the equilibrium for the MFG posed by (P2).

Note that based on the dynamic of the optimal X̂ defined in (1.20), the fixed point

condition (1.24) implies that the first moment µ̂s := E
[
X̂s

∣∣∣Y ] and the second moment

ν̂s := E
[
X̂2

s

∣∣∣Y ] of the optimal path conditioned on Y satisfy


µ̂s = µ̄+

∫ s

t

ÄÄ
b̃1(Yr, r)− b̃22(Yr, r) (2aYr(r) + fYr(r))

ä
µ̂r − b̃22(Yr, r)dYr(r)

ä
dr,

ν̂s = ν̄ +

∫ s

t

Ä
1 + 2b̃1(Yr, r)ν̂r − b̃22(Yr, r)

(
4aYr(r)ν̂r + 2dYr(r)µ̂r + 2fYr(r)µ̂

2
r

)ä
dr,

(1.25)

for s ≥ t. Note that under the optimal control in (1.19), comparing the terms in (1.15) and

(1.25), we obtain another 6κ equations:

w0y = b̃1y − 2b̃22yay − b̃22yfy, w1y = −b̃22ydy, w2y = −2b̃22ydy,

w3y = −4b̃22yay + 2b̃1y, w4y = −2b̃22yfy, w5y = 1,
(1.26)

for y ∈ Y . Using further algebraic structures, one can reduce the ODE system of 13κ

equations composed by (1.21) and (1.26) into a system of 4κ equations of the form (1.12) for

the MFG characterization in Theorem 1.2.1.

Proof of Theorem 1.2.1. Since ay (y ∈ Y) has the same expressions as (1.12), its exis-

tence, uniqueness and boundedness are shown in Lemma A.4.3. Given ay (y ∈ Y) and smooth

bounded w’s,

(by, dy, ey, fy : y ∈ Y)

is a coupled linear system, and their existence, uniqueness and boundedness is shown by

Theorem 12.1 in [2]. Similarly, given (by, dy, fy : y ∈ Y), (ky, cy : y ∈ Y) is a linear system,

and their existence and uniqueness is also guaranteed by Theorem 12.1 in [2].
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1.3 - Main Result of MFG problem

The ODE system (1.21) can be rewritten by

a′y(t) + 2b̃1yay(t)− 2b̃22ya
2
y(t) +

κ∑
i=1

qy,iai(t) + hy(t) = 0,

d′y(t) + b̃1ydy(t)− 2b̃22yay(t)dy(t)− b̃22yfy(t)dy(t) +
κ∑

i=1

qy,idi(t) = 0,

e′y(t)− b̃22ydy(t)fy(t)− 2b̃22yky(t)dy(t) + ey(t)
Ä
b̃1y − 2b̃22yay(t)− b̃22yfy(t)

ä
− 2b̃22yby(t)dy(t)+∑κ
i=1 qy,iei(t) = 0,

f ′
y(t) + b̃1yfy(t)− 2b̃22yay(t)fy(t) + fy(t)

Ä
b̃1y − 2b̃22yay(t)− b̃22yfy(t)

ä
+

κ∑
i=1

qy,ifi(t)− 2hy(t)

= 0,

k′y(t)−
1

2
b̃22yf

2
y (t) + 2ky(t)

Ä
b̃1y − 2b̃22yay(t)− b̃22yfy(t)

ä
− 2b̃22yby(t)fy(t) +

κ∑
i=1

qy,iki(t) = 0,

b′y(t) + by(t)
Ä
−4b̃22yay(t) + 2b̃1y

ä
+

κ∑
i=1

qy,ibi(t) + hy(t) = 0,

c′y(t) + ay(t)−
1

2
b̃22yd

2
y(t)− 2b̃22ydy(t)ey(t) + by(t) +

κ∑
i=1

qy,ici(t) = 0,

with the terminal conditions

ay(T ) = gy, by(T ) = gy, cy(T ) = 0, dy(T ) = 0, ey(T ) = 0, fy(T ) = −2gy, ky(T ) = 0.

Since ay, by (y ∈ Y) has the same expressions as (1.12), its existence, uniqueness, and

boundedness are shown in Lemma A.4.3. Meanwhile, with the given (ay, by : y ∈ Y), we

denote ly = 2ay + fy, and then

l′y(t) + 2b̃1yly(t)− b̃22yl
2
y(t) +

κ∑
i=1

qy,ili(t) = 0 , ly(T ) = 0.

By Lemma A.4.1 and Lemma A.4.2 in Appendix, there exists a unique solution for ly (y ∈ Y),

which is ly(t) = 0, y ∈ Y . This gives fy(t) = −2ay(t) and d
′
y(t)+ b̃1ydy(t)+

∑κ
i=1 qy,idi(t) = 0,

which implies dy(t) = 0, y ∈ Y . Then, the equation for ey can be simplified as e′y(t) +

b̃1yey(t) +
∑κ

i=1 qy,iei(t) = 0, which indicates that ey(t) = 0, y ∈ Y . For ky, cy, with the given

of (ay, by : y ∈ Y), we have

k′y(t) + 2b̃1yky(t)− 2b̃22ya
2
y(t) + 4b̃22yay(t)by(t) +

κ∑
i=1

qy,iki(t) = 0 , ky(T ) = 0,

c′y(t) + ay(t) + by(t) +
κ∑

i=1

qy,ici(t) = 0 , cy(T ) = 0.
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The existence and uniqueness of the solution for ky, cy (y ∈ Y) are yielded by Theorem 12.1

in [2].

Note that in this case, since 2ay + fy = 0 and dy = 0 for y ∈ Y , from (1.25) we have

µ̂s = µ̄+

∫ s

t

b̃1(Yr, r)µ̂r dr

for all s ∈ [t, T ]. Then

ν̂s = ν̄ +

∫ s

t

Ä
1 + 2b̃1(Yr, r)ν̂r − 4b̃22(Yr, r)aYr(r)ν̂r + 4b̃22(Yr, r)aYr(r)µ̂

2
r

ä
dr.

Plugging dy = 0 for y ∈ Y back to (1.19), we obtain the optimal control by

α̂s = −2b̃22(Ys, s)aYs(s)
Ä
X̂s − µ̂s

ä
.

Since we have dy = 0 for y ∈ Y , the value function can be simplified from (1.18) to

vy(x, t, µ̄, ν̄) = ay(t)x
2−2ay(t)xµ̄+ ky(t)µ̄

2 + by(t)ν̄ + cy(t).

By the equivalence Lemma 1.3.1, it yields the value function U of Theorem 1.2.1. Moreover,

since fy = −2ay and ky ̸= 0, the ODE system (1.21) together with (1.26) can be reduced

into (1.12). From the Lemma A.4.3, the existence and uniqueness of (ay, by, cy, ky : y ∈ Y)

in (1.12) is guaranteed.

1.4 Main Result of Convergence of N-player Game to

MFGs

In this section, we show the convergence of the N -player game to MFGs. To simplify the

presentation, we may omit the superscript (N) for the processes in the probability space

Ω(N), whenever there is no confusion.

First, we solve the N -player game in Subsection 1.4.1, which provides a Riccati system

consisting of O(N3) equations. Subsection 1.4.2 reduces the corresponding Riccati system

into an ODE system whose dimension is independent of N . This becomes the key building

block of the convergence rate obtained in Subsection 1.4.3. To obtain the convergence rate,

Subsection 1.4.3 provides an explicit embedding of some processes in Ω(N) into the probability

space Ω. Note that, Ω(N) is much richer than Ω since Ω(N) contains N Brownian motions

while Ω has only two Brownian motions. Therefore, careful treatment has to be carried out

to some processes of our interest, otherwise, such an embedding is in general implausible.
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1.4.1 Characterization of N-player game by Riccati system

The N -player game is indeed an N -coupled stochastic LQG problem by its very own defi-

nition, see Subsection 1.2.2. Therefore, the solution can be derived via Riccati system with

the existing LQG theory given below: For i = 1, 2, . . . , N , y ∈ Y ,

A′
iy + 2b̃1yeie

⊤
i Aiy − 2b̃22yA

⊤
iyeie

⊤
i Aiy +

N∑
j ̸=i

Ä
2b̃1yeje

⊤
j Aiy − 4b̃22yA

⊤
jyeje

⊤
j Aiy

ä
+

κ∑
j=1

qy,jAij +
hy
N

N∑
j ̸=i

(ei − ej) (ei − ej)
⊤ = 0,

B′
iy +

N∑
j ̸=i

Ä
b̃1yeje

⊤
j Biy − 2b̃22yA

⊤
iyeje

⊤
j Bjy − 2b̃22yA

⊤
jyeje

⊤
j Biy

ä
+

b̃1yeie
⊤
i Biy − 2b̃22yA

⊤
iyeie

⊤
i Biy +

κ∑
j=1

qy,jBij = 0,

C ′
iy −

1

2
b̃22yB

⊤
iyeie

⊤
i Biy −

N∑
j ̸=i

b̃22yB
⊤
jyeje

⊤
j Biy +

N∑
j=1

tr(Ajy) +
κ∑

j=1

qy,jCij = 0,

Aiy(T ) =
gy
N
Λi, Biy(T ) = 0 · 1N , Ciy(T ) = 0,

(1.27)

where the solutions consist of N ×N symmetric matrices Aiy’s, N -dimensional vectors Biy’s,

and Ciy ∈ R. In the above, 1N is the N -dimensional vector with all entries are 1, Λi’s are

N × N matrices with diagonal 1 except (Λi)ii = N − 1, (Λi)ij = (Λi)ji = −1 for any j ̸= i

and the rest entries as 0, and ei’s are the N -dimensional natural basis.

Lemma 1.4.1. Suppose (Aiy, Biy, Ciy : i = 1, 2, . . . , N, y ∈ Y) is the solution of (1.27).

Then, the value functions of N-player game defined by (1.9) are

Vi(y, x
(N)) = (x(N))⊤Aiy(0)x

(N) + (x(N))⊤Biy(0) + Ciy(0), i = 1, 2, . . . , N.

Moreover, the path and the control under the equilibrium are

dX̂it =
Ä
b̃1(Yt, t)X̂it − b̃22(Yt, t)

Ä
2(AiYt)

⊤
i X̂t + (BiYt)i

ää
dt+ dWit, i = 1, 2, . . . , N, (1.28)

and

α̂it = −b̃2(Yt, t)
Ä
2(AiYt)

⊤
i X̂t + (BiYt)i

ä
,

where (A)i denotes the i-th column of matrix A, (B)i denotes the i-th entry of vector B and

X̂t = [X̂1t, X̂2t, . . . , X̂Nt]
⊤.

Proof. It is standard that, under enough regularities, the value function of the N -player game

V (y, x(N)) = (V1, V2, . . . , VN)(y, x
(N)) can be lifted to the solution viy(x

(N), t) of the following
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system of HJB equations, for i = 1, 2, . . . , N and y ∈ Y ,

∂tviy + b̃1yxi∂iviy −
1

2

Ä
b̃2y∂iviy

ä2
+

N∑
j ̸=i

Ä
b̃1yxj − b̃22y∂jvjy

ä
∂jviy+

1

2
∆viy +

κ∑
j=1

qy,jvij +
hy
N

N∑
j ̸=i

Ä
(ei − ej)

⊤ x(N)
ä2

= 0,

viy(x
(N), T ) =

gy
N

N∑
j ̸=i

Ä
(ei − ej)

⊤x(N)
ä2
.

(1.29)

Then, the value functions V of N -player game defined by (1.9) is Vi(y, x
(N)) = viy(x

(N), 0)

for all i = 1, 2, . . . , N . Moreover, the path and the control under the equilibrium are

dX̂it =
Ä
b̃1(Yt, t)X̂it − b̃22(Yt, t)∂iviYt(X̂t, t)

ä
dt+ dWit, i = 1, 2, . . . , N,

and

α̂it = −b̃2(Yt, t)∂iviYt(X̂t, t).

The proof is the application of Dynkin’s formula and the details are omitted here. Due to

its LQG structure, the value function leads to a quadratic function of the form

viy(x
(N), t) = (x(N))⊤Aiy(t)x

(N) + (x(N))⊤Biy(t) + Ciy(t).

For each i = 1, 2, . . . , N , after plugging Viy into (1.29), and matching the coefficient of

variables, we get the desired results.

1.4.2 Reduced Riccati form for the equilibrium

So far, the N -player game and MFG have been characterized by Lemma 1.4.1 and Theorem

1.2.1, respectively. One of our main objectives is to investigate the convergence of the generic

optimal path X̂
(N)
1t of N -player game generated (1.27)-(1.28) to the optimal path X̂t of MFG

generated by (1.12)-(1.13).

Note that X̂t relies only on κ functions (ay : y ∈ Y) from the simple ODE system

(1.12) while ρ(X̂
(N)
t ) depends on O(N3) functions from (Aiy : i = 1, 2, . . . , N, y ∈ Y) solved

from a huge Riccati system (1.27). Therefore, it is almost a hopeless task for a meaningful

comparison between these two processes without gaining further insight into the complex

structure of the Riccati system (1.27).

To proceed, let us first observe some hidden patterns from a numerical result for the

solution of Riccati (1.27). The following matrix shows A20 at t = 1 for N = 5 with the same
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parameters as in Figure 1.3 and Figure 1.4 in Section 1.5.1:

A20(1) =


0.1319 −0.1924 0.0202 0.0202 0.0202

−0.1924 0.7696 −0.1924 −0.1924 −0.1924

0.0202 −0.1924 0.1319 0.0202 0.0202

0.0202 −0.1924 0.0202 0.1319 0.0202

0.0202 −0.1924 0.0202 0.0202 0.1319

 .

Interestingly enough, we observe that the entire 25 entries of A20(1) indeed consist of 4

distinct values. Moreover, similar computation with different values of N only yields a larger

table depending on N , but always consists of 4 values. Inspired by this accidental discovery

from the above numerical example, we may want to believe and prove a pattern of the matrix

Aiy in the following form:

(Aiy)pq =


a1y(t), if p = q = i,

a2y(t), if p = q ̸= i,

a3y(t), if p ̸= q, p = i or q = i,

a4y(t), otherwise,

(1.30)

for y ∈ Y . The next result justifies the above pattern: the N2 entries of the matrix Aiy can

be embedded to a 2κ-dimensional vector space no matter how big N is.

Lemma 1.4.2. There exists a unique solution (aN1y, a
N
2y) from the ODE system(1.31)

a′1y(t) + 2b̃1ya1y(t)−
2(N + 1)

N − 1
b̃22ya

2
1y(t) +

κ∑
j=1

qy,ja1j(t) +
N − 1

N
hy(t) = 0,

a′2y(t) + 2b̃1ya2y(t) +
2

(N − 1)2
b̃22ya

2
1y(t)−

4N

N − 1
b̃22ya1y(t)a2y(t) +

κ∑
j=1

qy,ja2j(t) +
hy(t)

N
= 0,

a1y(T ) =
N − 1

N
gy, a2y(T ) =

gy
N
,

(1.31)

for y ∈ Y. Moreover, the path and the control of player i under the equilibrium are

dX̂
(N)
it =

(
b̃1(Y

(N)
t , t)X̂

(N)
it − 2b̃22(Y

(N)
t , t)aN

1Y
(N)
t

(t)

(
X̂

(N)
it − 1

N − 1

N∑
j ̸=i

X̂
(N)
jt

))
dt+ dW

(N)
it ,

(1.32)

and

α̂
(N)
it = −2b̃2(Y

(N)
t , t)aN

1Y
(N)
t

(t)

(
X̂

(N)
it − 1

N − 1

N∑
j ̸=i

X̂
(N)
jt

)
for i = 1, 2, . . . , N .

Proof. It is obvious to see that in the Riccati system (1.27), Biy = 0 for all i = 1, 2, . . . , N
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and y ∈ Y . Note that in this case, for i = 1, 2, . . . , N , the optimal control is given by

α̂
(N)
i = −2b̃2(Y

(N)
t , t)

N∑
j=1

(A
iY

(N)
t

)ijX̂
(N)
jt = −2b̃2(Y

(N)
t , t)

Ä
A

iY
(N)
t

ä⊤
i
X̂

(N)
t .

Plugging the pattern (1.30) into the differential equation of Aiy, we have

a′1y + 2b̃1ya1y − 2b̃22ya
2
1y − 4(N − 1)b̃22ya

2
3y +

κ∑
j=1

qy,ja1j +
N − 1

N
hy = 0,

a′2y + 2b̃1ya2y − 2b̃22ya
2
3y − 4b̃22y (a1ya2y + (N − 2)a3ya4y) +

κ∑
j=1

qy,ja2j +
hy
N

= 0,

a′3y + 2b̃1ya3y − 2b̃22ya1ya3y − 4b̃22y
(
a1ya3y + (N − 2)a23y

)
+

κ∑
j=1

qy,ja3j −
hy
N

= 0,

a′3y + 2b̃1ya3y − 2b̃22ya1ya3y − 4b̃22y (a2ya3y + (N − 2)a3ya4y) +
κ∑

j=1

qy,ja3j −
hy
N

= 0,

a′4y + 2b̃1ya4y − 2b̃22ya
2
3y − 4b̃22y (a2ya3y + a1ya4y + (N − 3)a3ya4y) +

κ∑
j=1

qy,ja4j = 0,

which gives a1y + (N − 2)a3y = a2y + (N − 2)a4y since two expressions for a3y should be

identical. This implies that (a1y + (N − 2)a3y)
′ = (a2y + (N − 2)a4y)

′ or

− 2b̃1ya1y + 2b̃22ya
2
1y + 4(N − 1)b̃22ya

2
3y −

N − 1

N
hy −

κ∑
j=1

qy,ja1j

+ (N − 2)

(
−2b̃1ya3y + 2b̃22ya1ya3y + 4b̃22y (a2ya3y + (N − 2)a3ya4y)−

κ∑
j=1

qy,ja3j +
hy
N

)

=− 2b̃1ya2y + 2b̃22ya
2
3y + 4b̃22y (a1ya2y + (N − 2)a3ya4y)−

κ∑
j=1

qy,ja2j −
hy
N

+ (N − 2)

(
−2b̃1ya4y + 2b̃22ya

2
3y + 4b̃22y (a1ya4y + a2ya3y + (N − 3)a3ya4y)−

κ∑
j=1

qy,ja4j

)
.

After combining terms and substituting a2y + (N − 2)a4y with a1y + (N − 2)a3y, we get

a21y + (N − 2)a1ya3y − (N − 1)a23y = 0, which yields a3y = a1y or a3y = − 1
N−1

a1y. Note

that a3y ̸= a1y due to their different differential equations. Hence, we can conclude that
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a3y = − 1
N−1

a1y. In conclusion, for i = 1, 2, . . . , N , Aiy (y ∈ Y) has the following expressions:

(Aiy)pq =


a1y(t), if p = q = i,

a2y(t), if p = q ̸= i,

− 1
N−1

a1y(t), if p ̸= q, p = i or q = i,
1

(N−1)(N−2)
a1y(t)− 1

N−2
a2y(t), otherwise.

The existence and uniqueness of (1.27) is equivalent to the existence and uniqueness of

(1.31). For a1y, the existence and uniqueness can be deduced from Lemma A.4.1 and A.4.2.

Given a1y’s, a2y’s are linear equations, thus their existence and uniqueness are guaranteed by

Theorem 12.1 in [2]. Together with previous discussions, we conclude the results.

1.4.3 Proof of convergence rate

Based on the current progress, let us reiterate our goal (P1) for convergence. Our objective

is the convergence of the joint distribution L(X̂(N)
1t , Y

(N)
t ) of N -player game generated (1.31)-

(1.32) in the probability space Ω(N) to the distribution L(X̂t, Yt) of MFG generated by (1.12)-

(1.13) in the probability space Ω. More precisely, we want to find a number η > 0 satisfying

W2

Ä
L(X̂(N)

1t , Y
(N)
t ),L(X̂t, Yt)

ä
= O

(
N−η

)
, (1.33)

where W2 is the 2-Wasserstein metric. This procedure is given in the following two steps:

1. We will construct a process ZN in the probability space Ω, who provides exact copy of

the joint distribution in the sense of

L(X̂(N)
1t , Y

(N)
t ) = L(ZN , Y ).

Note that, the (1.32) shows that X̂
(N)
1t correlates to N many Brownian motions {W (N)

i :

i = 1, 2, . . . , N} from a much richer space Ω(N) while Ω is a much smaller space hav-

ing only two Brownian motions W and B. Therefore, such an embedding essentially

requires to represent X̂
(N)
1t by two independent Brownian motions and is in general

not possible. However, due to the symmetric structure of MFG (or the nature of the

mean-field effect), the embedding is possible and the details are provided in Lemma

1.4.3.

2. By Proposition 1.2.1, we can use distribution copy (ZN , Y ) in Ω to write

W2
2

Ä
L(X̂(N)

1t , Y
(N)
t ),L(X̂t, Yt)

ä
≤ E
ï∣∣∣ZN

t − X̂t

∣∣∣2ò . (1.34)

To obtain the estimate of the above right-hand side, we shall compare the (1.35) of ZN

and (1.13) of X̂, and it becomes essential to obtain the convergence rate of the ODE
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system (1.31) towards the ODE system (1.12). The details are provided in Lemma

1.4.4.

Lemma 1.4.3. Let {X i
0 : i ∈ N} be i.i.d. random variables in Ω independent to (W,B, Y )

with X1
0 = X0. Let Z

N be the solution of

ZN
t = X0 +

∫ t

0

b̃1(Ys, s)Z
N
s ds−

∫ t

0

2b̃22(Ys, s)â
N
1Ys

(s)
(
ZN

s − X̄N
s

)
ds+Wt, (1.35)

where

dX̄N
t = b̃1(Yt, t)X̄

N
t dt+

√
N − 1

N
dBt +

1

N
dWt, X̄N

0 =
1

N

N∑
i=1

X i
0,

and

âN1y =
N

N − 1
aN1y,

where aN1y is from the ODE system(1.31). Then, (ZN
t , Yt) in (Ω,FT ,P) has the same distri-

bution as (X̂
(N)
1t , Y

(N)
t ) in (Ω(N),F (N)

T ,P(N)).

Proof. Continued from the Lemma 1.4.2, player i’s path in the N -player game follows

X̂
(N)
it = x

(N)
i +

∫ t

0

b̃1(Y
(N)
s , s)X̂

(N)
is ds−

∫ t

0

2b̃22(Y
(N)
s , s)aN

1Y
(N)
s

(s)

(
X̂

(N)
is − 1

N − 1

N∑
j ̸=i

X̂
(N)
js

)
ds+W

(N)
it .

With the notation

X̄(N)
s =

1

N

N∑
i=1

X̂
(N)
is ,

one can rewrite the path by

X̂
(N)
it = x

(N)
i +

∫ t

0

b̃1(Y
(N)
s , s)X̂

(N)
is ds−

∫ t

0

2b̃22(Y
(N)
s , s)âN

1Y
(N)
s

(s)
Ä
X̂

(N)
is − X̄(N)

s

ä
ds+W

(N)
it .

(1.36)

By adding up the above equations (1.36) indexed by i = 1 to N , one can have

X̄
(N)
t = x̄(N) +

∫ t

0

b̃1(Y
(N)
s , s)X̄(N)

s ds+
1

N

N∑
i=1

W
(N)
it

= x̄(N) +

∫ t

0

b̃1(Y
(N)
s , s)X̄(N)

s ds+

√
N − 1

N

Ä√
N − 1W̄

(N)
−it

ä
+

1

N
W

(N)
it ,

(1.37)

where W̄
(N)
−it := 1

N−1

∑
j ̸=iW

(N)
jt .

Next, we define solution maps of (1.36) and (1.37):

Ḡt(x, ϕ,W1,W2) = Et(ϕ)
Å
x+

∫ t

0

Es(−ϕ)d(W1s +W2s)

ã
(1.38)
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and

Gt(x, ϕ1, ϕ2, ϕ3,W ) = xEt(ϕ1 − ϕ2) + Et(ϕ1 − ϕ2)

∫ t

0

Es(−ϕ1 + ϕ2) (ϕ2(s)ϕ3(s)ds+ dWs) ,

(1.39)

where

Et(ϕ) = exp

ß∫ t

0

ϕsds

™
.

Now, we can rewrite X̄
(N)
t of (1.37) and X̂

(N)
1t of (1.36) as

X̄
(N)
t = Ḡt

(
1

N

N∑
i=1

x
(N)
i , b̃1(Y

(N)
. , ·),

√
N − 1

N

Ä√
N − 1W̄

(N)
−1

ä
,
1

N
W

(N)
1

)
,

and

X̂
(N)
1t = Gt

Ä
x
(N)
1 , b̃1(Y

(N)
· , ·), 2b̃2(Y (N)

· , ·)âN1 (Y (N)
· , ·), X̄(N)(·),W (N)

1

ä
Meanwhile, (ZN , X̄N) of (1.35) can also be written in the form of

X̄N
t = Ḡt

(
1

N

N∑
i=1

X i
0, b̃1(Y., ·),

√
N − 1

N
B,

1

N
W

)
,

and

ZN
t = Gt

Ä
X0, b̃1(Y·, ·), 2b̃2(Y·, ·)âN1 (Y·, ·), X̄N(·),W

ä
(1.40)

Finally, the fact that the distribution of (ZN , Y ) in the space Ω is identical distribution to

(X̂
(N)
1 , Y (N)) in Ω(N) comes from the followings:

• b̃1, b̃2, â
N
1 are deterministic functions.

• The random processes (
√
N − 1W̄

(N)
−1 ,W

(N)
1 , Y (N)) are independent mutually in Ω(N),

while the random elements (B,W, Y ) are also independent triples. Moreover, two

random triples have identical joint distributions.

• Initial states are generated from identical joint distributions {x(N)
i : i = 1, 2, . . . , N}

and {X i
0 : i = 1, 2, . . . , N}.

Therefore, (ZN , Y ) and (X̂
(N)
1 , Y (N)) have the same distributions. This completes the proof.

In view of (1.34), we shall estimate the second moment E
ï∣∣∣ZN

t − X̂t

∣∣∣2ò. First, we can

rewrite X̂ of (1.13) using above representations via Gt:

X̂t = Gt

Ä
X0, b̃1(Y·, ·), 2b̃2(Y·, ·)a(Y·, ·), µ̂(·),W

ä
,
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which leads to a better comparison with ZN in the form of (1.40). To proceed, the following

properties of Gt are useful for the estimate of the second moment, whose proof is relegated

to the Appendix A.3. Throughout the proof of the next lemma, we will use K in various

places as a generic constant which varies from line to line.

Lemma 1.4.4. The convergence rate under the Wasserstein metric W2(·, ·) is

W2

Ä
L(X̂(N)

1t , Y
(N)
t ),L(X̂t, Yt)

ä
= O
Ä
N− 1

2

ä
.

Proof. In view of (1.34), we start with

W2
2

Ä
L(X̂(N)

1t , Y
(N)
t ),L(X̂t, Yt)

ä
≤ E
ï∣∣∣ZN

t − X̂t

∣∣∣2ò
=E
ï∣∣∣Gt

Ä
X0, b̃1(Y·, ·), 2b̃2(Y·, ·)âN1 (Y·, ·), X̄N(·),W

ä
−Gt

Ä
X0, b̃1(Y·, ·), 2b̃2(Y·, ·)a(Y·, ·), µ̂(·),W

ä∣∣∣2ò
:=E [|I1(t)− I2(t)|] .

Applying the Lipschitz continuity of (ϕ2, ϕ3) 7→ Gt(x, ϕ1, ϕ2, ϕ3,W ) by Appendix A.3 on the

conditional expectation E
[
|I1(t)− I2(t)|

∣∣∣Y ], we have

E|ZN
t − X̂t|2 ≤ KE

ñ
sup

0≤t≤T

Ä
2b̃2(Yt, t)â

N
1Yt

(t)− 2b̃2(Yt, t)aYt(t)
ä2

+ sup
0≤t≤T

(
X̄N(t)− µ̂(t)

)2ô
≤ KE

ñ
sup

0≤t≤T

∣∣∣b̃2(Yt, t)∣∣∣2 sup
0≤t≤T

∣∣âN1Yt
(t)− aYt(t)

∣∣2 + sup
0≤t≤T

∣∣X̄N(t)− µ̂(t)
∣∣2ô

≤ KE
ñ
sup

0≤t≤T

∣∣âN1Yt
(t)− aYt(t)

∣∣2 + sup
0≤t≤T

∣∣X̄N(t)− µ̂(t)
∣∣2ô

From the dynamic of X̄N and µ̂,
d
(
X̄N

t − µ̂t

)
= b̃1(Yt, t)

(
X̄N

t − µ̂t

)
dt+

√
N − 1

N
dBt +

1

N
dWt,

X̄N
0 − µ̂0 =

1

N

N∑
i=1

X i
0 − µ̂0,

which can be written in terms of Ḡt of (1.38):

X̄N(t)− µ̂(t) = Ḡt

(
1

N

N∑
i=1

X i
0 − µ̂0, b̃1(Y., ·),

√
N − 1

N
B,

1

N
W

)
.
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Using the fact of
∣∣∣b̃1y∣∣∣

∞
<∞ and Ito’s isometry, this yields the following estimation:

E
ñ
sup

0≤t≤T

∣∣X̄N(t)− µ̂(t)
∣∣2ô ≤ K

Ñ
1

N
+ E

∣∣∣∣∣ 1N
N∑
i=1

X i
0 − µ̂0

∣∣∣∣∣
2
é
.

Note that, by the central limit theorem, we have

NE

∣∣∣∣∣ 1N
N∑
i=1

X i
0 − µ̂0

∣∣∣∣∣
2
 = E

[∣∣∣∣∣
∑N

i=1(X
i
0 − µ̂0)√
N

∣∣∣∣∣
2]

→ V ar(X1
0 ) <∞, N → ∞,

and we conclude that

E
ñ
sup

0≤t≤T

∣∣X̄N(t)− µ̂(t)
∣∣2ô = O(N−1). (1.41)

Next, we investigate the boundness of

sup
0≤t≤T

∣∣âN1Yt
(t)− aYt(t)

∣∣2 .
From (1.31) and âN1y =

N
N−1

aN1y, we have
(
âN1y
)′
+ 2b̃1yâ

N
1y −

2(N + 1)

N
b̃22y
(
âN1y
)2

+
κ∑

i=1

qy,iâ
N
1i + hy(t) = 0

âN1y(T ) = gy.

Define uy = ay − âN1y, let τ = T − t and denote uy(τ) := uy(T − t), we haveu
′
y(τ) = 2b̃1y(τ)uy(τ)− 2b̃22y(τ)

(
ay(τ) + âN1y(τ)

)
uy(τ) +

2

N
b̃22y(τ)

(
âN1y(τ)

)2
+

κ∑
i=1

qy,iui(τ)

uy(0) = 0,

(1.42)

which gives that

uy(τ) =

∫ τ

0

(
2b̃1y(s)uy(s)− 2b̃22y(s)

(
ay(s) + âN1y(s)

)
uy(s) +

2

N
b̃22y(s)

(
âN1y(s)

)2
+

κ∑
i=1

qy,iui(s)

)
ds.

Thus for τ ∈ [0, T ],

|uy(τ)| ≤
∫ τ

0

Å
2
∣∣∣b̃1y∣∣∣

∞
|uy(s)|+ 2

∣∣∣b̃2y∣∣∣2
∞

Ä
|ay|∞ +

∣∣âN1y∣∣∞ä |uy(s)|
+

2

N

∣∣∣b̃2y∣∣∣2
∞

∣∣âN1y∣∣2∞ +
κ∑

i=1

|qy,i||ui(s)|

)
ds.
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Let
(∣∣∣b̃1y∣∣∣

∞
,
∣∣∣b̃2y∣∣∣

∞
, |ay|∞,

∣∣âN1y∣∣∞ , supi∈Y |qy,i|
)
≤ K1, then

|uy(τ)| ≤
2

N
K4

1T +

∫ τ

0

((
2K1 + 4K3

1

)
|uy(s)|+K1

κ∑
i=1

|ui(s)|

)
ds.

By adding up the above equation indexed by y = 1 to κ, one can have

κ∑
y=1

|uy(τ)| ≤
2κK4

1T

N
+
(
2K1 + 4K3

1 + κK1

) ∫ τ

0

κ∑
y=1

|uy(s)|ds.

Let K2 = 2κK4
1T and K3 = 2K1 + 4K3

1 + κK1, by the Grönwall’s inequality,

κ∑
y=1

|uy(τ)| ≤
K2

N
eK3τ ≤ K2

N
eK3T , ∀τ ∈ [0, T ],

which implies that
κ∑

y=1

|uy(τ)| ≤
K

N
, ∀τ ∈ [0, T ].

Thus, we have

sup
0≤t≤T

∣∣âN1Yt
(t)− aYt(t)

∣∣2 ≤ K

N2
, almsot surely . (1.43)

Therefore, the convergence is obtained from (1.41) and (1.43):

W2
2

Ä
L(ZN

t ),L(X̂t)
ä
≤KE

ñ
sup

0≤t≤T

∣∣âN1Yt
(t)− aYt(t)

∣∣2 + sup
0≤t≤T

∣∣X̄N(t)− µ̂(t)
∣∣2ô = O(N−1).

1.5 Numerical Simulations

In this section, we present numerical illustrations of Mean Field Games (MFGs) and the

convergence of the N -player game towards its limiting MFGs. Subsection 1.5.1 depicts sim-

ulations involving the Riccati system, value function, and optimal control of a generic player

in MFGs. Subsection 1.5.2 exhibits simulations showcasing the convergence of the N -player

game towards MFGs across various values of N .

1.5.1 Simulations of a generic player in MFGs

We have derived a 4κ dimensional Riccati ODE system (1.12) to determine the parameter

functions
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(ay, by, cy, ky : y ∈ Y)

needed for the characterization of the equilibrium and the value function. Meanwhile, we

also show the solvability of the Riccati ODE system in Section 1.3.

As mentioned earlier, different from the MFG characterization with the common noise,

the derived Riccati system is essentially finite-dimensional. In this subsection, we present

a numerical experiment and show some numerical results for solving the Riccati system to

demonstrate its computational advantages.

For the illustration purpose, assume the finite time horizon is given with T = 5, the

number of states κ = 2, and that the coefficients of the dynamic equation are listed below:

Y = {0, 1},

Q =

ñ
−0.5 0.5

0.6 −0.6

ô
,

b̃1 = 0, b̃2 = 1,

h0 = 2, h1 = 5, g0 = 3, g1 = 1,

µ0 = 0, ν0 = 2.

Firstly, using the forward Euler’s method with the step size δ = 10−2, we obtain trajectories

of (ay, by, cy : y ∈ Y), which is the solution of ODE system (1.12) in Figure 1.3. Next, using

the trajectories of the parameter functions and Markov chain Yt, we achieve the simulations

for α̂t and X̂t in Figure 1.4.

As shown in the Figure 1.4, people tend to centralize since the conditional second moment

of the population density νt is always decreasing.

1.5.2 Simulations of convergence of the N-player game to MFGs

In section 1.4, we showed that the generic player’s path for the N -player game is convergent

to the generic player’s path for MFGs. In this subsection, we demonstrate the convergence

of the conditional first moment, conditional second moment, and the value functions of the

N -player game to the corresponding terms of the generic player in the Mean Field Game

setup by using some numerical examples.

The following figures show the value functions (see Figure 1.7), µ(N) (see Figure 1.5) and

ν(N) (see Figure 1.6) under N ∈ {10, 20, 50, 100} with the same parameters’ settings as in

Figure 1.3 and Figure 1.4 in section 1.5.1. We can see the convergence to the solution of the

generic player as N gets larger.

1.6 Conclusion and Future Work

Chapter 1 investigates the convergence rate of the N -player game, governed by a Markov

chain common noise, towards its asymptotic MFG under the Linear-Quadratic-Gaussian
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Figure 1.3: Simulations for ay, by and cy, the solution to Riccati system (1.12).
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Figure 1.7: Simulation of player 1’s optimal value function V .

structure. To achieve this, firstly, we introduce a Markovian structure using two auxiliary

processes for the first and second moments of the MFG equilibrium and employ the fixed

point condition in MFG. By doing so, we characterize the equilibrium measure in MFG

with a finite-dimensional Riccati system of ODEs. Consequently, we obtain the equilibrium

path, equilibrium control, and the value function in MFG. Subsequently, we address the N -

player game under the LQG structure, and we characterize its equilibrium path, equilibrium

control, and the value function through a Riccati system of ODEs with a dimension of

O(N3). Leveraging the N -invariant algebraic structure of this system of ODEs, we establish

a dimension reduction result, facilitating a comparison between the equilibrium path X̂
(N)
1

in the N -player game and the equilibrium path X̂ in the MFG.

To demonstrate the convergence between the two equilibrium paths, we embed X̂
(N)
1 from

Ω(N) to Ω using a distribution copy ZN ∈ Ω, leading to the achievement of the convergence

result and the computation of the convergence rate. Lastly, some numerical simulations are

presented to demonstrate the convergence result.

1.6.1 Future work

Future explorations can encompass broader considerations within the Mean Field Game

(MFG) framework. Specifically, extensions could involve incorporating additional complexi-

ties, such as time delays and Poisson jumps, into the MFG model. Furthermore, beyond the

confines of the Linear Quadratic Gaussian (LQG) structure, investigations into the conver-

gence behavior of MFG with common noise under more generalized structural frameworks

are warranted.

Moreover, our study in this project imposes a constraint mandating positive sensitivities
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in the cost functional. Our findings reveal a noteworthy observation: the absence of a global

solution for MFG instances wherein the coefficient of the cost functional assumes a negative

value, whereas a global solution is attainable under positive coefficients.
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2
Robust Relative Performance for Portfolio

Optimization

We conduct an analysis of robust portfolio management problems under competition and

relative performance criteria, focusing on portfolio managers, herein referred to as agents,

with Constant Relative Risk Aversion (CRRA) utilities trading in log-Gaussian markets

within a common investment horizon [0, T ]. We develop explicit constant robust strategies

tailored for finite populations of competitive agents. Additionally, we delve into the concept of

information value, which entails contrasting portfolio outcomes of terminal wealth achieved

under robust strategies in situations of incomplete information with those attained under

Nash equilibrium strategies in situations of complete information.

2.1 Introduction and Literature Review

In incomplete information situations, the robust relative performance problem involves find-

ing the optimal robust strategy π̂1 for agent 1 to maximize the robust utility:

sup
π1∈A

inf
π∈An

J(π1, π)

over one closed convex admissible strategy set A. In this chapter, we contemplate J as a

particular instance of power utility of the Constant Relative Risk Aversion (CRRA) type.

In contrast to scenarios of complete information, where investors possess full knowledge

regarding each other’s actions, this model operates under the assumption of limited informa-

tion access. The goal is to hedge against the worst-case scenario by evaluating the adverse

outcomes resulting from other investors’ actions for every feasible strategy. The optimal

robust strategy maximizes utility across all worst-case scenarios.

The concept of the value of information (VOI) plays a crucial role in decision-making
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under uncertainty, providing a quantitative framework for assessing the utility of acquiring

additional information. In various fields such as economics, finance, engineering, and health-

care, decision-makers often face situations where the acquisition of information entails costs

but can lead to better-informed decisions and improved outcomes. The value of information

captures the incremental benefit gained from reducing uncertainty and making more informed

choices.

Robust portfolio optimization is a critical aspect of financial decision-making, particularly

in the realm of investment strategies where uncertainty and risk are inherent. Relative

performance criteria offer a nuanced perspective on portfolio optimization, focusing not only

on absolute returns but also on the performance relative to a benchmark or peer group. In

this context, robust relative performance portfolio optimization seeks to develop strategies

that are resilient to market fluctuations and uncertainties, ensuring consistent performance

regardless of prevailing conditions.

The literature on robust relative performance portfolio management has witnessed signif-

icant growth in recent years, driven by the need for adaptive investment strategies in volatile

financial markets. Researchers have explored various aspects of this domain, ranging from

theoretical frameworks to practical implementations. One prominent line involves the con-

sideration of different utility functions to model investor preferences. Studies by Markowitz

(1952) [46] and Sharpe (1964) [57] laid the foundation for modern portfolio theory, which

emphasizes the trade-off between risk and return. Building upon this framework, researchers

have extended the analysis to incorporate relative performance metrics, as highlighted by the

works of Roll (1978) [55] and Grinold and Kahn (1999) [12].

Furthermore, the emergence of behavioral finance has provided valuable insights into in-

vestor behavior and decision-making processes. Prospect theory, proposed by Kahneman

and Tversky (1979) [36], challenges the traditional assumptions of rationality in financial

decision-making and underscores the importance of framing effects and loss aversion. Inte-

grating behavioral insights into robust portfolio management strategies has been a subject

of interest for researchers aiming to capture the nuances of investor behavior and sentiment.

In addition to theoretical developments, empirical studies have contributed to the ad-

vancement of robust relative performance portfolio management. Empirical research by

Daniel et al. (1997) [13] and Fama and French (1993) [16] has provided empirical evidence on

the efficacy of various factors in explaining portfolio returns, paving the way for factor-based

investing strategies. Moreover, the advent of machine learning and artificial intelligence tech-

niques has enabled researchers to develop sophisticated models for portfolio optimization and

risk management, as demonstrated in studies by Gu et al. (2020) [23] and Liang et al. (2024)

[11].

The paper of Huang et al. (2010) [26] considers the relative robust conditional value-

at-risk portfolio selection problem where the underlying probability distribution of portfolio

return is only known to belong to a certain set. They construct a robust portfolio with multi-

ple experts (priors) by solving a sequence of linear programs or a second-order cone program.

Georgantas (2021) [21] provides comprehensive empirical assessments of the performance of
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different types of robust optimization (RO) models based on popular risk measures, using

data from the US market during the period 2005–2020. For the optimal portfolio and robust

ranking issue, Nguyen and Lo (2012) [53] found a weight vector that maximizes some generic

objective function for the worst realization of the ranking.

To this end, the literature on robust relative performance portfolio management under-

scores the importance of adaptive and resilient investment strategies in navigating dynamic

financial markets. By integrating insights from various disciplines, including finance, eco-

nomics, and behavioral science, researchers aim to develop robust frameworks that can with-

stand market uncertainties and deliver consistent performance over time.

The literature on the value of information spans multiple disciplines and has been a

subject of interest for researchers for decades. Early works by Blackwell (1953) [5] and

Lindley (1956) [41] laid the theoretical groundwork for the Bayesian approach to decision

theory, which emphasizes the role of prior beliefs and posterior probabilities in quantifying

the value of information. These seminal contributions provided foundational insights into

the optimal allocation of resources for information acquisition and decision-making under

uncertainty.

Subsequent research efforts have extended the value of information framework to various

applied domains, including finance, healthcare, environmental science, and engineering. In

finance, studies by Hirshleifer and Riley (1992) [25] and Grossman and Stiglitz (1980) [22]

have explored the role of information in asset pricing and market efficiency, highlighting the

impact of asymmetric information on market dynamics and investor behavior.

In addition to theoretical developments, empirical studies have provided insights into

the practical applications of the value of information framework. Research by Yokota and

Thompson (2004) [66] has examined decision-making processes in environmental health risk

management, demonstrating how the value of information analysis can inform strategic risk

management efforts.

Overall, the literature on the value of information underscores its significance as a decision-

making tool in various domains. By quantifying the benefits of reducing uncertainty and

making more informed choices, the value of information framework offers valuable insights for

policymakers, managers, and other decision-makers facing complex and uncertain situations.

2.1.1 Outline

The rest of this chapter is outlined as follows: Section 2.2 presents a precise formulation of

the problem. Section 2.3 is devoted to the derivation of our main result: the robust strategy

of the relative performance problem. In Section 2.4, we first show the Nash equilibrium

strategy under the complete information setting and investigate the value of information.

Section 2.5 demonstrates the robust strategy by some numerical examples. The conclusion

and some potential future works are summarized in Section 2.6.
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2.2 Problem Setup

In this section, we collect the notations and give the research problem.

The finite-population case consists of (n+ 1) agents trading in a common risk-free asset

S0 and an individual stock asset. For convenience, we may assume that the risk-free rate

r = 0. The common invest horizon is the interval [0, T ]. Let (Ω,FT ,P,F = {Ft : 0 ≤ t ≤ T})
be a filtered probability space satisfying usual conditions, on which Bt,W

1
t , ...,W

n+1
t are

independent one-dimensional standard Brownian motions.

The price of each stock asset Si is modeled as a log-Gaussian process driven by two

independent Brownian motions. The first Brownian motion Bt is the same for all prices,

representing a common market noise, while the second W i
t is idiosyncratic, specific to each

individual stock. Precisely, the i-th agent specializes in stock i, i = 1, ..., (n+1), whose price

Si is given by
dSi

Si

= µidt+ νidW
i
t + σidBt.

We refer to Bt as the common noise and W i
t as an idiosyncratic noise.

The investment strategy πi(t) is taken to be the fraction of wealth that agent i invests in

the stock Si at time t, i = 1, ..., (n+ 1). The discounted wealth of agent i is given by

dXi = πiXi(µidt+ νidW
i
t + σidBt) (2.1)

with initial value X0
i = x0i . The class of admissible strategies is the set A of self-financing

F-progressively measurable processes πi(t) satisfying E
∫ T

0
|πi(t)|2dt <∞.

We aim to analyze the robust optimization for X1, the controlled wealth process of agent

one. The same robust procedure can be executed similarly by any other agent.

Let π = (π2, ...πn+1)
⊤, µ = (µ2, ..., µn+1)

⊤, ν = (ν2, ..., νn+1)
⊤, σ = (σ2, ..., σn+1)

⊤ be n-

dimensional vectors and M =diag(ν22 , ..., ν
2
n+1), N =diag(σ2

2, ..., σ
2
n+1), Σ = (σiσj)i,j∈{2,...,n+1}

be n× n-dimensional matrices.

Now we consider the relative performance to the geometric mean of the wealth of all

agents except for agent i, X−i = (
∏(n+1)

k=1,k ̸=iXk)
1
n , with initial value X

0

−i = y0. Let Zt =
X1

X
θ

−1

,

whose initial value is z0, the wealth ratio of the agent one over the geometric mean of the

wealth of all other agents with a constant power parameter θ ≥ 0. Here, θ serves as a

sensitivity parameter, with θ > 1 indicating competition among agents, 0 < θ < 1 indicating

collaboration, and θ = 0 denoting a scenario of non-relative performance.

In this chapter, we consider the utility a function U : R+ → R of CRRA utility. Thus the

performance functional J is the particular case of power utility of CRRA type,

J(π1, π) = E

[
U

(
X1(T )

X
θ

−1(T )

)]
= E[U(ZT )] :=

®
p−1E [Zp

T ] , p ̸= 0

E [logZT ] , p = 0
(2.2)
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where p < 1 denotes a constant parameter, and it is recognized that 1 − p represents the

relative risk aversion parameter.

Since X−1 = (
∏(n+1)

i=2 Xi)
1
n , by Itô’ formula we have in vector form

dX−1

X−1

= (
1

n
µ⊤π+

1− n

2n2
π⊤Mπ− 1

2n
π⊤Nπ+

1

2n2
π⊤Σπ)dt+

1

n

(n+1)∑
i=2

νiπidW
i+

1

n
σ⊤πdB. (2.3)

Next we consider Zt =
X1

X
θ

−1

with θ ≥ 0, applying Itô’ formula to function f(x, y) =
x

yθ
,

therefore

dZt

Zt

= [µ1π1 −
θ

n
µ⊤π − (1− n)θ

2n2
π⊤Mπ +

θ

2n
π⊤Nπ − θ

2n2
π⊤Σπ − θ

n
σ1π1σ

⊤π

+
(θ + 1)θ

2n2
π⊤(M + Σ)π]dt+ ν1π1dW

1
t +

θ

n

(n+1)∑
i=2

νiπidW
i + (σ1π1 +

θ

n
σ⊤π)dB.

(2.4)

Research Problem: Find π̂1 such that the robust utility maximization

sup
π1

inf
π
J(π1, π) (2.5)

is obtained over the admissible set A.

2.3 Main Results of Robust Relative Performance Prob-

lem with Incomplete Information

In this section, we find a unique constant robust strategy in Theorem 2.3.1, which we sub-

sequently specialize to the single stock case in Corrolary 2.3.1. Before we state the main

results, we denote A:=
(pθ + n)

n
M + N +

pθ

n
Σ for convenience, and examine various cases

for A as discussed in Lemma 2.3.1 and 2.3.2.

Lemma 2.3.1. If A is positive-definite, and if ψ satisfies ordinary differential equation

ψ
′
(t) + pλt(π1)ψ(t) = 0, ψ(T ) = 1 (2.6)

where

λt(π1) =
θ

2n
inf
π
[π⊤Aπ − 2(µ⊤ + pσ1π1σ

⊤)π] + µ1π1 + (p− 1)
ν21 + σ2

1

2
π2
1,

then we obtain a solution ψ(t) = E[exp(
∫ T

t
pλs(π1)ds)|Ft] to the differential equation (2.6).

Proof of Lemma 2.3.1. It is easy to check that the terminal condition is satisfied, ψ(T ) =
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E[exp(
∫ T

T
pλs(π1)ds)|Ft] = 1. Fixed {ω} ∈ Ft, the differential equation yields

[logψω(t)]
′
=
ψ

′
(t)

ψ(t)
= −pλ(πω

1 ).

Hence integrating from t to T gives

− logψω(t) =

∫ T

t

d(logψω(s)) = −p
∫ T

t

λ(πω
1 (s))ds.

Therefore ψω(t) = exp(p
∫ T

t
λ(πω

1 (s))ds) for {ω} ∈ Ft and thus we solve equation (2.6) with

solution

ψ(t) = E[exp(p
∫ T

t

λ(π1(s, ω))ds)|Ft].

Lemma 2.3.2. If A is not a positive-definite matrix, then the map π 7→ π⊤Aπ, where π ∈ An,

attains its infimum of −∞.

Proof of Lemma 2.3.2. Assume that the diagonal decomposition of A is P−1AP = B =

diag(λ2, ..., λn+1) where λi are the eigenvalue of A, and P is a unitary matrix with each

column being the unite eigenvector. If A is not a positive-definite matrix, at least one

eigenvalue of A, say λ2 is negative; then in the map π 7→ π⊤Aπ = π⊤PBP−1π where π ∈ An,

there is one map f2 : π2 7→ λ2π
2
2 where π2 ∈ A is strictly concave on the closed convex set

A since λ2 < 0, therefore the minimum image value f2 is −∞. It follows that in the whole

map π 7→ π⊤Aπ = π⊤PBP−1π, the inf value among all the map values is −∞.

We interpret Lemma 2.3.2 in plain words, intuitively it means that at least one agent can

take a strategy that could ruin X1.

2.3.1 Main theorem and remarks

Theorem 2.3.1 (Main result). Assume that for all i = 1, ..., (n + 1), we have xi0 > 0, p <

1, θ ≥ 0, µi > 0, σi ≥ 0, νi ≥ 0 and σi + νi > 0. Define the constants

Φn :=
1

n
σ⊤A−1µ

and

Ψn :=
1

n
σ⊤A−1σ.

If A is a positive-definite matrix, there exists a unique constant robust strategy, given by the

solution to the robust problem with

π̂1 =
µ1 − θpσ1Φn

(1− p)(ν21 + σ2
1) + θp2σ2

1Ψn

. (2.7)
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If A is not a positive-definite matrix, the robust utility problem is 0 if 0 < p < 1 or −∞ if

p < 0 for whatever π1 is.

Corollary 2.3.1 (Single stock). Assume that for all i = 1, ..., (n + 1) we have µi = µ >

0, σi = σ > 0, and νi = 0 . Then A = N +
pθ

n
Σ with eigenvalues {σ2, ..., σ2, (1 + pθ)σ2} is

positive-definite if p ∈ (−1

θ
, 1). Moreover, the robust strategy is given by

π̂1 =
µ− θpσΦn

(1− p)σ2 + θp2σ2Ψn

.

Remark 2.3.1. If θ = 0, the robust strategy is reduced to the Merton case, π̂1 =
µ1

(1− p)(ν21 + σ2
1)
.

If θ ̸= 0, there exists relative performance between X1 and other agents.

Remark 2.3.2 (No common noise). If the case σi = 0 for all i = 1, ...(n + 1), the matrix

A =
(pθ + n)

n
M , hence A is positive-definite if p is (−n

θ
, 1). Moreover, the robust strategy is

reduced to the Merton case, π̂1 =
µ1

(1− p)(ν21 + σ2
1)
.

2.3.2 Proof of the Main Theorem 2.3.1

Proof of Theorem 2.3.1. Firstly, we fix π1 in the inf problem (2.5). Now the aim is to find

π̂π1 such that the value function v(t, x, y) satisfies vπ1(0, x01, y0) = infπ J(π1, π), and v(t, x, y)

satisfies the HJB equation

vt +min
π

[
1

2
(
(θ + 1)θ

2n2
π⊤(M + Σ)π)y2vyy +

θ

n
σ1π1σ

⊤πxyvxy

+(
1

n
µ⊤π +

1− n

2n2
π⊤Mπ − 1

2n
π⊤Nπ +

1

2n2
π⊤Σπ)yvy]

+
1

2
(σ2

1 + ν21)π
2
1x

2vxx + µ1π1xvx = 0,

(2.8)

for (t, x, y) ∈ [0, T ]× R+ × R+, with terminal condition

v(T, x, y) = U(
x

y
) = p−1(

x

y
)p.

We claim here that the homogeneity of v holds, i.e., v(t,
x

k
,
y

k
) = v(t, x, y) for nonzero coeffi-

cient k, hence we can simplify the above HJB equation (2.8) by letting z =
x

y
. Additionally,

we have the relation v(t, x, y) = v(t,
x

y
,
y

y
) = v(t,

x

y
, 1) = v(t, z).

From now on, we simplify and proceed based on the fact of homogeneity, turning the aim

to find π̂π1 such that the value function v(t, z) satisfies vπ1(0, z0) := infπ J(π1, π).
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Define an operator Lπv = b(z, π)vz +
1

2
σ2(z, π)vzz where b(z, π) = z(µ1π1 −

θ

n
µ⊤π −

(1− n)θ

2n2
π⊤Mπ+

θ

2n
π⊤Nπ− θ

2n2
π⊤Σπ− θ

n
σ1π1σ

⊤π+
(θ + 1)θ

2n2
π⊤(M +Σ)π) and σ2(z, π) =

z2(ν21π
2
1 +

θ2

n2
π⊤Mπ + σ2

1π
2
1 +

θ2

n2
π⊤Σπ − 2θ

n
σ1π1σ

⊤π). Therefore from (2.8), v(t, z) satisfies

the HJB equation (2.9)

0 = vt + inf
π
[Lπv]

= vt + inf
π
[z(µ1π1 −

θ

n
µ⊤π − (1− n)θ

2n2
π⊤Mπ +

θ

2n
π⊤Nπ − θ

2n2
π⊤Σπ − θ

n
σ1π1σ

⊤π

+
(θ + 1)θ

2n2
π⊤(M + Σ)π)vz +

1

2
z2(ν21π

2
1 +

θ2

n2
π⊤Mπ + σ2

1π
2
1 +

θ2

n2
π⊤Σπ − 2θ

n
σ1π1σ

⊤π)vzz]

(2.9)

for (t, z) ∈ [0, T ]× R+, with terminal condition

v(T, z) = U(z) = p−1zp. (2.10)

We can find explicitly a smooth solution to (2.9)-(2.10). In the following, we prove the

Theorem 2.6 in two cases: p ̸= 0 and p = 0.

Case I: If p ̸= 0, we consider a candidate solution

w(t, z) = ψ(t)U(z) = ψ(t)p−1zp (2.11)

for some positive smooth function ψ. Hence for w(t, z) we derive

wt(t, z) = ψ
′
(t)p−1zp, wz(t, z) = ψ(t)zp−1, wzz(t, z) = (p− 1)ψ(t)zp−2. (2.12)

Substituting (2.12) into (2.9)-(2.10) and reordering the terms related to π, we get

zp(
ψ

′
(t)

p
+ψ(t)(inf

π
[
θ

n
π⊤Aπ− θ

n
(µ⊤ + pσ1π1σ

⊤)π] + pµ1π1 + (p− 1)p
ν21 + σ2

1

2
π2
1) = 0. (2.13)

If A is positive-definite, we derive that ψ should satisfy differential equation

ψ
′
(t) + pλt(π1)ψ(t) = 0, ψ(T ) = 1, (2.14)

where

λt(π1) =
θ

2n
inf
π
[π⊤Aπ − 2(µ⊤ + pσ1π1σ

⊤)π] + µ1π1 + (p− 1)
ν21 + σ2

1

2
π2
1. (2.15)
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From Lemma 2.3.1, ψ(t) = E[exp(
∫ T

t
pλs(π1)ds)|Ft] is a solution to equation (2.14) and

w(t, z) = ψ(t)p−1zp = p−1zpE exp(

∫ T

t

pλs(π1)ds), (t, z) ∈ [0, T ]× R+. (2.16)

Hence from (2.16), w(t, z) is strictly increasing and concave in z and is a smooth solution

to (2.9)-(2.10). Furthermore, if the matrix A is positive-definite, the function π 7→ π⊤Aπ is

strictly convex on the closed convex set An and thus attains its minimum at some π̂. By

construction, π̂ attains the infimum of the operator infπ[Lπv].

To solve π̂π1 , from the equation (2.15), the min value could be achieved at the point where

its first-order derivative is zero. Then we get the minimizer

π̂π1 = A−1[µ+ pσ1π1σ]. (2.17)

Hence by substituting back into (2.15) we solve

λt(π1) = − θ

2n
[µ⊤ + pσ1π1σ

⊤]A−1[µ+ pσ1π1σ] + µ1π1 + (p− 1)
ν21 + σ2

1

2
π2
1. (2.18)

In the sup problem (2.5), given π̂π1 from (2.17) in the inf problem, the aim is to find π̂1
such that

sup
π1

v(0, z0) = sup
π1

p−1z0
pE exp(

∫ T

0

pλs(π1)ds) (2.19)

where λ(π1) is in equation (2.18). Since the max value is achieved at the point where its

first-order derivative is zero, we get the solution that π1 satisfies

π̂1 =
µ1 − θpσ1Φn

(1− p)(ν21 + σ2
1) + θp2σ2

1Ψn

. (2.20)

It follows that the robust strategy π̂1 is a unique constant strategy, hence the value function

J(π̂1, π̂) = sup
π1

v(0, z0) = p−1z0
p exp(pλ(π̂1)T ). (2.21)

For this functional value (2.21), if we take its inverse of the utility function, we derive the

process

ZT = z0 exp(λ(π̂1)T ). (2.22)

We refer λ(π̂1) as the robust growth rate.

If A is not a positive-definite matrix, from Lemma 2.3.2, the inf value in (2.15) is −∞,

and it leads to the following:

inf
π
J(π1, π) =

®
0, 0 < p < 1,

−∞, p < 0.
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Therefore if A is not a positive-definite matrix, for whatever π1 is, the robust utility is

sup
π1

inf
π
J(π1, π) =

®
0, 0 < p < 1,

−∞, p < 0.
(2.23)

In plain words, if A is not a positive-definite matrix, there is no robust strategy that could

hedge the worst case.

Case II: If p = 0, the matrix A = M + N is always positive-definite, and a candidate

solution is in the form

w(t, z) = ψ(t)U(z) = ψ(t) + log z (2.24)

for some positive function ψ. We derive ψ should satisfy the ordinary differential equation

ψ
′
(t) = −λ, ψ(T ) = 1 (2.25)

where

λ(π1) =
θ

2n
inf
π
[π⊤Aπ − 2µ⊤π] + µ1π1 −

ν21 + σ2
1

2
π2
1. (2.26)

We then obtain a solution ψ(t) = E[
∫ T

t
λ(π1(s))ds|Ft] and

w(t, z) = log z + E[
∫ T

t

λ(π1(s))ds|Ft], (t, z) ∈ [0, T ]× R+. (2.27)

Hence, w(t, z) is strictly increasing and concave in z and is a smooth solution to (2.9)-(2.10).

Furthermore, since A is positive-definite, the function π 7→ π⊤Aπ − 2µ⊤π is strictly convex

on the closed convex set An and thus attains its minimum at some π̂. By construction, π̂

attains the infimum of infπ[Lπv].

Solving π̂π1 , from the equation (2.26), the min value is achieved at the point where its

first-order derivative is zero. Then we derive

π̂π1 = A−1µ. (2.28)

Hence by substituting into equation (2.26) we have

λ(π1) = − θ

2n
µ⊤A−1µ+ µ1π1 −

ν21 + σ2
1

2
π2
1. (2.29)

In the second layer, given π̂π1 , the aim is to find π̂1 such that

sup
π1

v(0, z0) = sup
π1

(log z0 + E[
∫ T

0

λ(π1(s))ds|F0]). (2.30)

Hence we search the critical point of λ(π1) by taking first-order derivative and second-order

derivative:

λ
′
(π1) = µ1 − (σ2

1 + ν21)π1, (2.31)
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λ
′′
(π1) = −(σ2

1 + ν21) < 0. (2.32)

It is easy to verify that we indeed have supπ1
λ(π1). Solving π̂1, we derive

π̂1 =
µ1

σ2
1 + ν21

. (2.33)

Finally, combining the two cases, we proved the Theorem 2.3.1.

2.3.3 Verification for the case p ̸= 0

For the Case I, p ̸= 0, to verify that π̂ indeed achieves the minimum, pick arbitrary control

π ∈ An. Firstly apply the Itô’ formula to w(u, z) = w(u, Zu) between t ∈ [0, T ) and T ,

w(T, Zt,x
T ) = w(t, x)+

∫ T

t

wt(u, Z
t,x
u )du+

∫ T

t

wz(u, Z
t,x
u )dZu+

1

2

∫ T

t

wzz(u, Z
t,x
u ) < dZu, dZu > .

Substituting equations (2.4) inside, we have

w(T, Zt,x
T ) = w(t, x) +

∫ T

t

wt(u, Z
t,x
u )du+

∫ T

t

wz(u, Z
t,x
u )dZu +

1

2

∫ T

t

wzz(u, Z
t,x
u ) < dZu, dZu >

= w(t, x) +

∫ T

t

wt(u, Z
t,x
u )du+

∫ T

t

wz(u, Z
t,x
u )Zu([µ1π1 −

θ

n
µ⊤π − (1− n)θ

2n2
π⊤Mπ

+
θ

2n
π⊤Nπ − θ

2n2
π⊤Σπ − θ

n
σ1π1σ

⊤π +
(θ + 1)θ

2n2
π⊤(M + Σ)π]du+ ν1π1dW

1
u

+
θ

n

(n+1)∑
i=2

νiπidW
i + (σ1π1 +

θ

n
σ⊤π)dB) +

1

2

∫ T

t

wzz(u, Z
t,x
u )Z2

u(ν
2
1π

2
1du

+
θ2

n2
π⊤Mπdu+ (σ2

1π
2
1 +

θ2

n2
π⊤Σπ +

2θ

n
σ1π1σ

⊤π))du.

Since E
∫ T

0
|πi(t)|2dt < ∞ for i = 1, ...(n + 1), we know that E

∫ T

0
|ν1π1wz(u, Z

t,x
u )Zu|2du <

∞,E
∫ T

0
| θ
n

∑(n+1)
i=2 νiπiwz(u, Z

t,x
u )Zu|2du < ∞ and E

∫ T

0
|(σ1π1 + θ

n
σ⊤π)wz(u, Z

t,x
u )Zu|2du <

∞. So take expectations on both sides in the above equality

Ew(T, Zt,x
T ) = w(t, x) + E

∫ T

t

[wt + zwz(µ1π1 −
θ

n
µ⊤π − (1− n)θ

2n2
π⊤Mπ +

θ

2n
π⊤Nπ

− θ

2n2
π⊤Σπ − θ

n
σ1π1σ

⊤π +
(θ + 1)θ

2n2
π⊤(M + Σ)π) +

1

2
z2wzz(ν

2
1π

2
1 +

θ2

n2
π⊤Mπ

+ σ2
1π

2
1 +

θ2

n2
π⊤Σπ − 2θ

n
σ1π1σ

⊤π)]du.

From equation (2.9), the integrand is greater than or equal to 0 and equals 0 only when the

control is the minimum control π̂ and denotes the corresponding process Ẑ. Therefore we
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derive

Ew(T, Ẑt,x
T ) ≤ Ew(T, Zt,x

T ), ∀π ∈ An.

Hence from the equation (2.10), we know for all t ∈ [0, T ),

Ew(T, Ẑt,x
T ) = EU(Ẑt,x

T ),Ew(T, Zt,x
T ) = EU(Zt,x

T ).

So if t equals 0, we derive

EU(ẐT ) ≤ EU(ZT ),

which shows that J(π1, π̂) ≤ J(π1, π), ∀π ∈ An. Thus it has been verified that π̂ is indeed

the optimal control and v = w.

2.4 Value of Information

In this section, we first derive the unique constant Nash equilibrium strategy π∗
i in Subsection

2.4.1. After that, in Subsection 2.4.2 we conduct analysis on the value of the information.

2.4.1 Analysis of Nash equilibrium strategy π∗i with complete in-

formation

We derive the equilibrium of the model using the method in the paper of Lacker D. and

Zariphopoulou T. (2019) [38].

For the notations, let π−i = (π1, ..., πi−1, πi+1, ...πn+1)
⊤, µ−i = (µ1, ..., µi−1, µi+1, ..., µn+1)

⊤,

ν−i = (ν1, ..., νi−1, νi+1, ..., νn+1)
⊤, σ−i = (σ1, ..., σi−1, σi+1, ..., σn+1)

⊤ be n-dimensional vectors

and M−i = diag(ν21 , ..., ν
2
i−1, ν

2
i+1, ..., ν

2
n+1), N−i = diag(σ2

1, ..., σ
2
i−1, σ

2
i+1, ..., σ

2
n+1), Σ−i =

(σiσj)i,j∈{1,...,i−1,i+1,...,n+1} be n× n-dimensional matrix.

Theorem 2.4.1 (Nash equilibrium strategy). Assume that for all i = 1, ..., (n+ 1) we have

xi0 > 0, p < 1, θ > 0, µi > 0, σi ≥ 0, νi ≥ 0 and σi + νi ≥ 0. Define the constants

Φn+1 :=
1

n+ 1

n+1∑
k=1

σkµk

ν2k(1− p)− σ2
k(1− p(1 +

θ

n
))

and

Ψn+1 :=
pθ

n

n+1∑
k=1

σ2
k

ν2k(1− p)− σ2
k(1− p(1 +

θ

n
))

.
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There exists a unique constant equilibrium, given by

π∗
i =

µi − (1 +
1

n
)pθσi

Φn+1

1 + Ψn+1

ν2i (1− p)− σ2
i (1− p(1 +

θ

n
))

. (2.34)

Moreover, we have the identity

1

n+ 1

n+1∑
k=1

σkπ
∗
k =

Φn+1

1 + Ψn+1

.

Proof of Theorem 2.4.1. Fix an agent i and constant strategy αk ∈ R for k ̸= i. Since

X−i = (
∏(n+1)

i=1,k ̸=iXk)
1
n , then by Itô formula we have

dX−i

X−i

= (
1

n
µ⊤
−iπ+

1− n

2n2
π⊤M−iπ−

1

2n
π⊤N−iπ+

1

2n2
π⊤Σ−iπ)dt+

1

n

(n+1)∑
k=1,k ̸=i

νkπkdW
k+

1

n
σ⊤
−iπdB.

(2.35)

The utility is a function U : R+ → R and the performance functional J is the particular case

of power utility of CRRA type,

sup
πi

J(πi, π−i) = sup
πi

E

[
U

(
Xi(T )

X
θ

−i(T )

)]
=


p−1 sup

πi

E

[(
Xi(T )

X
θ

−i(T )

)p]
, p ̸= 0

supπi
E
ï
log

Å
Xi(T )

X
θ
−i(T )

ãò
, p = 0.

(2.36)

Then we obtain that the value (2.36) is equal to v̂(X i
0, X

−i

0 , 0), where v̂(x, y, t) solves the

HJB equation

0 = v̂t + sup
πi

[Lπv̂]

= v̂t + sup
πi

[
ν2i + σ2

i

2
π2
i x

2v̂xx + πiµixv̂x +
1

n
πiσiσ

⊤
−iπ−ixyv̂xy

+
1

2n2
(π⊤

−iN−iπ−i + π⊤
−iΣ−iπ−i)y

2v̂yy

+ (
1

n
µ⊤
−iπ−i +

1− n

2n2
π⊤
−iM−iπ−i −

1

2n
π⊤
−iN−iπ−i +

1

2n2
π⊤
−iΣ−iπ−i)yv̂y],

(2.37)

for (x, y, t) ∈ R2
+ × [0, T ], with terminal condition when p ̸= 0

v̂(x, y, T ) = U(
x

yθ
) = p−1(

x

yθ
)p. (2.38)

We can find explicitly a smooth solution to (2.37)-(2.38). We are looking for a candidate
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solution in the form

ŵ(x, y, t) = ψ(t)U(
x

y
) = ψ(t)p−1(

x

yθ
)p (2.39)

for some positive function ψ. Hence we derive

0 = (
x

yθ
)p(
ψ

′
(t)

p
+ ψ(t)(sup

πi

[(p− 1)
ν2i + σ2

i

2
π2
i + (µi −

pθ

n
σ⊤
−iπ−iσi)πi

+
θ(1 + pθ)

2n2
(π⊤

−iN−iπ−i + π⊤
−iΣ−iπ−i)

− θ(
1

n
µ⊤
−iπ−i +

1− n

2n2
π⊤
−iM−iπ−i −

1

2n
π⊤
−iN−iπ−i +

1

2n2
π⊤
−iΣ−iπ−i)]).

(2.40)

And we derive that ψ should satisfy the differential equation

ψ
′
(t) + pρψ(t) = 0, ψ(T ) = 1 (2.41)

where

ρ = sup
πi

[(p− 1)
ν2i + σ2

i

2
π2
i + (µi −

pθ

n
σ⊤
−iπ−iσi)πi +

θ(1 + pθ)

2n2
(π⊤

−iN−iπ−i + π⊤
−iΣ−iπ−i)

− θ(
1

n
µ⊤
−iπ−i +

1− n

2n2
π⊤
−iM−iπ−i −

1

2n
π⊤
−iN−iπ−i +

1

2n2
π⊤
−iΣ−iπ−i)].

(2.42)

We then obtain ψ(t) = E exp(
∫ T

t
pρsds) and

ŵ(x, y, t) = p−1(
x

yθ
)pE exp(

∫ T

t

pρsds), (x, y, t) ∈ R2
+ × [0, T ]. (2.43)

Hence, ŵ is strictly increasing and concave in
x

y
, and is a smooth solution to (2.37)-(2.38).

Furthermore, the function πi 7→ (p − 1)
ν2i + σ2

i

2
π2
i + (µi −

pθ

n
σ⊤
−iπ−iσi)πi is strictly concave

on the closed convex set A, and thus attains its maximum at some π∗
i . By construction, π∗

i

attains the supremum of supπi
[Lπv̂].

Solving π∗
i , from the equation (2.42), the max value could be achieved at the point where

its first-order derivative is zero. Then we get the maximizer

π∗
i =

µi −
pθ

n
σiσ

⊤
−iπ−i

(ν2i + σ2
i )(1− p)

. (2.44)

We want to get rid of the term σ⊤
−iπ−i. For (α1, ..., αn+1) to be a constant equilibrium, we
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must have π∗
i = αi, for each i = 1, ...(n+ 1). Using (2.44) and abbreviating

σα :=
1

n+ 1

n+1∑
k=1

σkαk =
1

n+ 1
σiαi +

1

n+ 1
σ⊤
−iα−i, (2.45)

we deduce that we must have

αi =
µi − (1 +

1

n
)pθσiσα

ν2i (1− p)− σ2
i (1− p(1 +

θ

n
))

. (2.46)

Multiplying both sides by σi and averaging over i = 1, ..., (n+ 1) give

σα = Φn+1 −Ψn+1σα, (2.47)

where Φn+1,Ψn+1 are as in (2.4.1) and (2.4.1). We then deduce from (2.46) that equilibrium

strategy αi = π∗
i is given by (2.34).

As a byproduct, we obtain the value function

v(t, x, y) = p−1(
x

yθ
)pE exp(

∫ T

t

pρsds), (t, x, y) ∈ [0, T ]× R2
+, (2.48)

where

ρ = sup
πi

[(p− 1)
ν2i + σ2

i

2
π2
i + (µi −

pθ

n
σ⊤
−iπ−iσi)πi +

θ(1 + pθ)

2n2
(π⊤

−iN−iπ−i + π⊤
−iΣ−iπ−i)

− θ(
1

n
µ⊤
−iπ−i +

1− n

2n2
π⊤
−iM−iπ−i −

1

2n
π⊤
−iN−iπ−i +

1

2n2
π⊤
−iΣ−iπ−i)].

(2.49)

It follows that the Nash strategy π∗
1 is constant, hence the value function is

J(π∗
1, π−1) = sup

π1

v(0, x0, y0) = p−1(
x0
y0

)p exp(pρ(π∗
1)T ) = p−1z0

p exp(pρ(π∗
1)T ). (2.50)

For this functional value, if we take its inverse of the utility function, we derive that

Z̃T = z0 exp(ρ(π
∗
1)T )). (2.51)

We refer ρ(π∗
1) as the Nash equilibrium growth rate.

50



2.5 - Numerical Simulations

2.4.2 Value of the Information

We denote the ratio between the wealth under the equilibrium in complete information and

the wealth under the robust strategy in incomplete information as the value of the information

of knowledge on the behavior of other agents in the market. Thus the value of the information

is captured by

Value of Infor =
Z̃T

ZT

= exp{[ρ(π∗
1)− λ(π̂1)]T}. (2.52)

Equivalently, the difference between the certainty equivalent rates ρ(π∗
1) and λ(π̂1) is

ρ(π∗
1)− λ(π̂1) =

log Z̃T − logZT

T
. (2.53)

2.5 Numerical Simulations

In this section, we study the robust model of the single stock case. We first list the input

constants here: the yearly yield µi = µ = 16%, yearly volatility σi = σ = 20%, νi = 0, the

investment horizon is half a year T = 0.5, and the initial relative wealth z0 = 1. The three

parameters are p, θ, n with constrains p < 1, θ > 0, n ∈ N+. Then from Remark 2.3.1 we

know that A = N +
pθ

n
Σ has eigenvalues {0.447, · · · , 0.447, (1 + pθ)0.447}. So one more

constraint is 1 + pθ > 0 to let A be positive definite.

• plot robust strategy π̂1, robust growth rate λ and terminal wealth ZT given n = 60, θ =

1.2 > 1 with the range for p is (−0.83333, 1). We see all three functions are decreasing

as p increases, see Figure 2.1.

Figure 2.1: Simulations of π̂1, λ, ZT when n = 60, θ = 1.2 given νi = 0
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• plot robust strategy π̂1, robust growth rate λ and terminal wealth ZT given n = 60, θ =

0.7 < 1 with the range for p is (−1.42857, 1). We see all three functions are increasing

as p increases, see Figure 2.2.

Figure 2.2: Simulations of π̂1, λ, ZT when n = 60, θ = 0.7 given νi = 0

• plot robust strategy π̂1, robust growth rate λ and terminal wealth ZT given n = 60, p =

0.5 positive with the range for θ is (0,∞). We see all three functions are decreasing as

p increases, see Figure 2.3.

Figure 2.3: Simulations of π̂1, λ, ZT when n = 60, p = 0.5 given νi = 0
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• plot robust strategy π̂1, robust growth rate λ and terminal wealth ZT given n = 60, p =

−0.5 negative with the range for θ is (0, 2). We see all three functions are increasing

as p increases, see Figure 2.4.

Figure 2.4: Simulations of π̂1, λ, ZT when n = 60, p = −0.5 given νi = 0

• plot robust strategy π̂1, robust growth rate λ and terminal wealth ZT given p = 0.5, θ =

0.7. We see all three functions are constant lines since all the Greek constants Φn and

Ψn are the same value for whatever n. The robust strategy π̂1 = 4.7059, robust growth

rate λ = 0.53367 and terminal wealth ZT = 1.3058, see Figure 2.5.

Now we assume that µi = 0.16, σi = 0.2, νi = 0.2, and plot 3-dimensional figures for the

robust growth rate λ and the Nash equilibrium growth rate ρ with fixed p, note that the

xy-plane are variables n and θ.

2.6 Conclusion and Future Work

Firstly we can extend the current framework to incorporate dynamic competition dynamics

among investors. Investigate how strategic interactions evolve over time and how this affects

the robustness of portfolio management strategies. Next, we may investigate dynamic risk

management strategies within the context of robust portfolio management. We suggest to

explore how adaptive risk allocation and hedging techniques can enhance portfolio resilience

and mitigate downside risks in competitive environments. Lastly, we may validate the robust

portfolio management framework using real-world financial data. Conduct empirical studies

to assess the performance of robust strategies under different market conditions and validate

their effectiveness in practice.
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Figure 2.5: Simulations of π̂1, λ, ZT when θ = 0.7, p = 0.5 given νi = 0

Figure 2.6: Simulations of robust growth rate λ of θ and n, fix p given νi = 0.2
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Figure 2.7: Simulations of Nash equilibrium growth rate ρ of variant θ and n, fix p given
νi = 0.2,
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3
Random Matrix Perturbation Bounds for

Low-Rank Approximation

In this chapter, we apply the Dyson Bessel process and the theory of stochastic differential

equations to find a tighter perturbation bound for a rectangular matrix when the perturbation

is a Gaussian noise, under the Frobenius-norm distance. The primary method employed is

the Dyson-Bessel process, enabling us to monitor the evolution of the right singular vectors

of the perturbed matrix Â as it progresses through time. Two main applications for the

derived perturbation bound are considered. One application for this perturbation bound is

the subspace recovery problem and another application is the rank-k matrix approximation

problem.

3.1 Introduction

Random matrix perturbation bounds represent a fundamental concept in the field of matrix

analysis, with broad applications in various domains, including statistics [67], randomized

numerical linear algebra (see [15, 24, 48, 58, 61]), machine learning, and data privatization

[44]. These bounds quantify the effect of perturbations of the eigenvectors and singular

vectors of matrices, providing valuable insights into the stability and robustness of numerical

algorithms and statistical estimators. In recent years, there has been growing interest in

developing tighter perturbation bounds for random matrix models. This chapter provides an

introduction to random matrix perturbation bounds, explores their theoretical foundations,

and reviews the existing literature on their applications in diverse fields.

Let A ∈ Rm×d be a rectangular matrix, and denote by σ1 ≥ · · · ≥ σd ≥ 0 its singular

values. For instance, A may be a data matrix where each row represents a datapoint, and

each column represents a feature variable. In numerous practical scenarios, the task arises

of identifying a rank-k matrix closely resembling A. This situation is evident in various
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contexts, such as the rank-k matrix approximation problem, aimed at determining a rank-k

matrix that minimizes a specified distance from A. Additionally, it manifests in the subspace

recovery problem, wherein the objective is to calculate a rank-k projection matrix VkV
⊤
k ,

where Vk denotes the d× k matrix comprising the top-k singular vectors of A.

In the context of matrix analysis, given an initial matrix A, the matrix A may be per-

turbed by adding another matrix E with the same dimensions as A. This operation yields a

perturbed matrix denoted as Â, defined as the sum of matrices A and E,

Â = A+ E. (3.1)

One natural question is how to obtain tight bounds for low-rank approximations to A?

Perturbation bounds are important for its broad applications of low-rank approximation in

statistics [67], for instance, Principle Component Analysis (PCA) [7, 37, 40, 71], randomized

numerical linear algebra [15, 24, 48, 58, 61], and many more fields. In the setting when the

matrix E may be any deterministic matrix, tight perturbation bounds on the eigenvalues and

eigenvectors have been obtain in multiple previous works [14, 63, 64]. Weyl’s perturbation

theorem gives a deterministic perturbation bound on the singular values σ(A), σ(Â) [64]. The

Davis-Kahan-Wedin sine-Theta theorem [14, 63] gives a perturbation bound on the matrices

Vk(A), V̂k(Â) whose columns are the top k singular vectors under deterministic perturbation.

Specifically, the Davis-Kahan-Wedin sine-Theta theorem gives the bound

∥VkV ⊤
k − V̂kV̂

⊤
k ∥2 ≤

∥E∥2
σk − σk+1

where Vk, V̂k are the matrices with columns of the top k singular vectors respectively, σk, σk+1

are singular values of matrix A. The bound given above is tight for the worst case when the

perturbation E is deterministic.

However, oftentimes the observed data matrices are corrupted by random noise. For

many applications, the noise is white noise (i.e., Gaussian) E = G where G is a matrix whose

entries are independent and identically distributed Gaussian random variables [54, 56],

Â = A+G. (3.2)

However, the classical perturbation bound given by Davis-Kahan-Wedin [14, 63] is not tight

with respect to random perturbations. This raises the question of how to obtain a tight

perturbation bound for random perturbations which are Gaussian distributed. Our main

result, Theorem (3.2.1), gives perturbation bounds for low-rank approximations which are

tight with respect to Gaussian random matrix perturbations. Specifically, let B(t) ∈ Rm×d

be a matrix-valued Brownian motion, where each entry undergoes an independent standard

Brownian motion. To prove our bounds, we analyze the incorporation of Gaussian noise into
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a matrix structure as a matrix-valued stochastic process– the Dyson Bessel process:

Φ(t) = A+
√
tG = A+B(t). (3.3)

This approach offers several advantages. Firstly, this approach allows us to bypass higher-

order terms that arise in Taylor expansion of deterministic perturbations, as these terms

vanish in the stochastic derivative when the perturbation is a Brownian motion, due to the

independence of random noise additions at each time step of the Brownian motion. Secondly,

unlike in deterministic perturbations where the singular vector perturbations may add up in

a worse-case manner, the distribution of Gaussian noise has rotational symmetry, potentially

leading to cancellations when the perturbations are added at each time step of the Brownian

motion.

Towards this end, we represent the perturbed matrix as a matrix-valued Dyson Bessel

process Φ(t), with the initial condition Φ(0) = A and terminal condition Φ(T ) = Â. This

perspective allows us to apply stochastic analysis tools to investigate the singular value

processes σi(t) and the right singular vector processes vi(t) of the Dyson Bessel process Φ(t).

3.1.1 Previous works

The literature on random matrix perturbation bounds spans several decades and encompasses

a wide range of theoretical and applied research. Early works by Davis and Kahan (1970)

[14] and Wedin (1972) [63] laid the groundwork for perturbation theory in numerical linear

algebra, providing rigorous bounds on the sensitivity of eigenvalues and singular values to

matrix perturbations. These seminal results formed the basis for subsequent developments

in the field, including extensions to more general perturbation models (for example [58]) and

applications in statistical estimation and machine learning.

In recent years, there has been a surge of interest in developing perturbation bounds for

random matrix models, driven by the increasing prevalence of stochastic processes in modern

data analysis and scientific computing. Studies by Higham (2002) [24] and Martinsson et

al. (2019) [47] have investigated the effects of random perturbations, such as Gaussian

noise, on the spectral properties of matrices, highlighting the importance of robust numerical

algorithms in the presence of uncertainty.

Moreover, researchers have explored the applications of random matrix perturbation

bounds in various domains, including subspace recovery, low-rank approximation, and spec-

tral clustering. For example, Zou et al. (2006) [71] demonstrated the error of perturbation

bounds in sparse principal component analysis, while Mahoney (2011) [43] utilized random

matrix theory to develop efficient algorithms for large-scale numerical linear algebra prob-

lems.
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3.1.2 Outline

The rest of this chapter is outlined as follows: Section 3.2 presents a precise formulation of

the problem, main results, and two applications to matrix perturbation theory. Section 3.3

is devoted to the preliminaries that are needed for the proof of the main theorem. In Section

3.4, we first show the outline of the proof and then present in detail every step to achieve

the main theorem and the proofs of two applications. Section 3.5 investigates the tightness

of our bounds with numerical examples. The conclusion and some potential future works are

summarized in Section 3.6. Appendix A.6 gives additional comparisons to a previous bound.

3.2 Problem Formulation

Suppose we are given a set of values γ1 ≥ · · · ≥ γk ≥ 0 for some k ∈ [d]. Let Γ :=

diag{γ1, · · · , γd}, where γi := 0 for i > k. Given a rectangular matrix A ∈ Rm×d with singular

values σ1 ≥ · · · ≥ σd ≥ 0 and corresponding right-singular vectors V = [v1, · · · , vd] ∈ Rd×d,

we consider the perturbed matrix Â = A+
√
TG for some T > 0, where G is a matrix with

independent and identically distributed (i.i.d.) standard normal entries. For the perturbed

matrix Â, let its right-singular vectors be denoted as V̂ = [v̂1, · · · , v̂d] ∈ Rd×d.

We consider the problem of obtaining a bound on the Frobenius norm perturbation error

E
î
∥V̂ Γ⊤ΓV̂ ⊤ − V Γ⊤ΓV ⊤∥2F

ó
,

E
î
∥V̂ Γ⊤ΓV̂ ⊤ − V Γ⊤ΓV ⊤∥2F

ó
≤ O(m, d, k, T, γi, σi)? (3.4)

Throughout this chapter, in our notation, denoted by O, we denote a multiple of C, where

C denotes a positive constant. For simplicity, we refrain from explicitly stating the constant

C.

3.2.1 Notations

Before we present our results, we give the notation used throughout this chapter. Without

loss of generality, we may assume m ≥ d.

• (γ1, · · · , γd), a set of specified values

• (σ1, · · · , σd), singular values of matrix A

• (σ1(t), · · · , σd(t)), singular value processes of Φ(t) = A+
√
tG

• (σ̂1, · · · , σ̂d), singular values of perturbed matrix Â = A+
√
TG = Φ(T )

• ∆ij(t) = σi(t)− σj(t), i < j, singular value gaps of Φ(t) = A+
√
tG

• (v1, · · · , vd), right singular vectors of matrix A
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• (v1(t), · · · , vd(t)), right singular vector processes of Φ(t) = A+
√
tG

• (v̂1, · · · , v̂d), right singular vectors of perturbed matrix Â = A+
√
TG = Φ(T )

3.2.2 Main results of matrix perturbation bounds

The main result (Theorem 3.2.1) gives a new upper bound under the Frobenius-norm error

of the Gaussian perturbation for the rectangular random matrix approximation problem.

Before we state the main result, we present the assumption on the gaps in the top k + 1

singular values σ1 ≥ ... ≥ σk+1 of the matrix A, required by our results. As illustrated in

Figure 3.1, this assumption is satisfied on many real-world datasets.

Assumption 3.2.1 ((A, k, T, σ, γ) Singular value gaps). The gaps in the top k + 1 singular

values σ1 ≥ ... ≥ σd of the matrix A ∈ Rm×d satisfy σi−σi+1 ≥ 8T
√
d log(1

δ
) for every i ∈ [k],

where δ := 1
8dγ2

1
× γ2

1−γ2
d

(σ1−σd)2
. Further, we assume σk − σj ≥ 4T

√
d for any j > k.
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Figure 3.1: US census 1990 dataset (data source see [49]): the singular values decay expo-
nentially fast. The horizontal axis shows the descending order of singular values, and the
vertical axis shows a log plot of corresponding singular values

Let A = UΣV ⊤ be a singular value decomposition of A, and let Â = ÛΣ̂V̂ ⊤ be a singular

value decomposition of Â. Note that the eigenvalue decompositions of A⊤A = V Σ⊤ΣV ⊤ and

of Â⊤Â = V̂ Σ̂⊤Σ̂V̂ ⊤ involve only right singular vector matrices V , V̂ .

We now state our main result.
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Theorem 3.2.1 (Main result). Let T > 0. Given a rectangular matrix A ∈ Rm×d with

singular values σ1 ≥ ... ≥ σd ≥ 0 and corresponding orthonormal right-singular vectors

v1, ...vd (denote V = [v1, ...vd] ∈ Rd×d). Let G be a matrix with i.i.d. N(0, 1) entries, and

consider the perturbed matrix Â := A+
√
TG ∈ Rm×d.

Define σ̂1 ≥ ... ≥ σ̂d ≥ 0 to be the singular values of Â with corresponding orthonormal

right-singular vectors v̂1, ...v̂d (denote V̂ = [v̂1, ...v̂d]).

Let γ1 ≥ ... ≥ γd ≥ 0 and k ∈ [d] be any numbers such that γi = 0 for i > k, and define

Γ := diag (γ1, ..., γd). Then if A satisfies Assumption 3.2.1 for (A, k, T, σ, γ), we have

E
î
∥V̂ Γ⊤ΓV̂ ⊤ − V Γ⊤ΓV ⊤∥2F

ó
≤ O

(
k∑

i=1

d∑
j=i+1

(γ2i − γ2j )
2

(σi − σj)2

)
T. (3.5)

3.2.3 Two applications to matrix theory

Application to subspace recovery.

For the subspace recovery problem, we plug in γi = 1 for all i ≤ k, and γi = 0 for all i > k to

the Theorem 3.2.1. The perturbed matrix indeed gives a projection matrix, and we obtain

error bounds for the subspace recovery problem.

Corollary 3.2.1 (Subspace recovery). Let T > 0. Given a rectangular matrix A ∈ Rm×d with

singular values σ1 ≥ ... ≥ σd ≥ 0 and right-singular vectors v1, ...vd (denoted V ∈ Rd×d). Let

G be a matrix with i.i.d. N(0, 1) entries, and consider the perturbed matrix Â = A+
√
TG.

For any k ∈ [d], define the d× k matrices Vk = [v1, ...vk] and V̂k = [v̂1, ...v̂k] where v̂1, ...v̂d
are corresponding orthonormal right-singular vectors of Â. Then if A satisfies Assumption

3.2.1 for (A, k, T, σ, γ) where γ = (1, · · · , 1, 0, · · · , 0) is the vector with the first k entries

equal to 1, we have

E
î
∥V̂kV̂ ⊤

k − VkV
⊤
k ∥F
ó
≤ O(

√
kd

(σk − σk+1)
)
√
T . (3.6)

Moreover, if we further have that σi − σi+1 ≥ Ω(σk − σk+1) for all i ≤ k, then

E
î
∥V̂kV̂ ⊤

k − VkV
⊤
k ∥F
ó
≤ O(

√
d

(σk − σk+1)
)
√
T . (3.7)

Theore 3.2.1 improves by
√
k
√
m√
d

(in expectation) on the bound implied by the Davis-

Kahan-Wedin sine theorem [14, 63] which, in the Gaussian case, is

||V̂kV̂ ⊤
k − VkV

⊤
k ||F ≤ O(

√
km

σk − σk+1

),

with high probability.

Further when

√
r√
d
≥ (

σk+1

σk
− k − 1

k
), i.e. (

σk+1

σk
− k − 1

k
)2d ≤ r ≤ d, or when the matrix
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A is full rank, i.e. r = d, the bound in Corollary 3.2.1 improves by a factor of at least
√
k (in

expectation) on the bound of [54] (their Theorem 18), which says that for any t > 0, rank

r > 0, with high probability

∥V̂kV̂ ⊤
k − VkV

⊤
k ∥F ≤ 4

√
2k

Å
t
√
r

σk − σk+1

+
4m

σk(σk − σk+1)
+

2
√
m

σk

ã
. (3.8)

Moreover, in contrast to their bound (3.8) which grows linearly with m, our bound only

grows linearly with
√
d, which may be much smaller than m since in many applications

d << m. Furthermore, when

√
r√
d
≥ σk+1

σk
, or when the matrix A is full rank, our Corollary

3.2.1 improves by a factor of k on the bound shown in Theorem 18 of [54], and also improves

the dependence on m to a dependence on d.

Application to rank-k matrix approximation.

For the rank-k matrix approximation problem, we plug in γi = σi for all i ≤ k, and γi = σi
for all i > k. The perturbed matrix in Theorem 3.2.1 outputs rank-k matrix approximation.

Corollary 3.2.2 (Rank-k matrix approximation). Let T > 0. Given a rectangular matrix

A ∈ Rm×d with singular values σ1 ≥ ... ≥ σd ≥ 0 and with right-singular vectors v1, ...vd,

where we define V := [v1, ...vd] ∈ Rd×d. Let G be a matrix with i.i.d. N(0, 1) entries, and

consider the perturbed matrix that outputs Â = A+
√
TG.

For any k ∈ [d], define Σk := diag (σ1, ..., σk, 0, ...0). Define σ̂1 ≥ ... ≥ σ̂d ≥ 0 to be the

singular values of Â with corresponding orthonormal right-singular vectors v̂1, ...v̂d, where we

define V̂ := [v̂1, ...v̂d], and define Σ̂k := diag (σ̂1, ..., σ̂k, 0, ...0). Then if A satisfies Assumption

3.2.1 for (A, k, T, σ, γ) for γ = (σ1, · · · , σk, 0, · · · , 0), we have

E
î
||V̂ Σ̂⊤

k Σ̂kV̂
⊤ − V Σ⊤

k ΣkV
⊤||2F
ó
≤ O

(
d∥Σk∥2F + k

d∑
j=k+1

Å
σk

σk
σk − σj

ã2)
T. (3.9)

In particular, Corrollary 3.2.2 implies that√
E
î
||V̂ Σ̂⊤

k Σ̂kV̂ ⊤ − V Σ⊤
k ΣkV ⊤||2F

ó
≤ O

Å√
k
√
d

Å
σ1 + σk

σk
σk − σk+1

ãã
T.

Corollary 3.2.2 improves by a factor of k on the bound ||V̂ Σ̂⊤
k Σ̂kV̂

⊤ − V Σ⊤
k ΣkV

⊤||F ≤
O(

√
k
√
m(k +

σk
σk − σk+1

)) implied by the Davis-Kahan-Wedin sine theorem [14, 63] (see

Appendix A.6 for details). Further, when the rank r of the matrix A satisfies r ≥ (
σk+1

σk
)2d

or when the matrix A is full rank, applying the perturbation bound of Theorem 18 of [54]

gives with high probability,

||V̂ Σ̂⊤
k Σ̂kV̂

⊤ − V Σ⊤
k ΣkV

⊤||F ≤ 4k
√
m(k +

σk
σk − σk+1

), (3.10)
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(see Appendix A.6 for details). Hence, Corollary 3.2.2 improves by a factor of k1.5 on the

bound implied by Theorem 18 [54].

Remark 3.2.1 (Tightness for full-rank special case). In the special case where k = d, we have

∥(A+
√
TG)⊤(A+

√
TG)−A⊤A∥F = ∥

√
TA⊤G+

√
TG⊤A+TG⊤G∥F = Θ(||A⊤G||F

√
T ) =

Θ(||Σd||F
√
d
√
T ) with high probability. Thus, Corollary 3.2.2 is tight for this special case.

The last equality above holds w.h.p. because ||A⊤G||2F = tr(G⊤AA⊤G) = tr(G⊤ΣdΣ
⊤
dG) =

tr(ΣdΣ
⊤
dGG

⊤) = ∥Σd∥2Fd w.h.p., where we may assume without loss of generality that A is a

diagonal matrix because the distribution of G is invariant w.r.t. multiplication by orthogonal

matrices.

3.3 Preliminaries

In this section, we present the preliminary materials as needed in the main theorems and

main proofs. We discuss the previously mentioned Dyson Bessel process in Section 3.3.1.

Next, we present the diffusions of right-singular vectors in Section 3.3.2. In Section 3.3.3, we

show deterministic perturbation bounds derived by Weyl, Davis-Kahan, and Wedin.

3.3.1 Dyson Bessel process

We express the perturbed matrix as a matrix-valued Dyson Bessel process Φ(t) valued at a

certain time T with the initial condition Φ(0) = A. Through this perspective, we leverage

stochastic analysis tools to the singular value processes σi(t) and the right singular vector

processes vi(t) of the Dyson Bessel process Φ(t).

At every time t > 0 the singular values σ1(t), . . . , σd(t) of Φ(t) are distinct with probabil-

ity 1 and equation (3.3) induces a stochastic process on the singular values σi(t) and singular

vectors vi(t). The process can be expressed via the following diffusion equations. The dy-

namics of the singular values σi(t) of the Dyson-Bessel process are given by (see Theorem 1

in [6]),

dσi(t) = dβii(t) +

(
1

2σi(t)

∑
j ̸=i

(σi(t))
2 + (σj(t))

2

(σi(t))2 − (σj(t))2
+
m− 1

2σi(t)

)
dt, 1 ≤ i ≤ d, (3.11)

where βii, 1 ≤ i ≤ d is a family of independent one-dimensional Brownian motions.
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3.3.2 Right singular vector SDE

The dynamics of right singular vectors vi(t) of the Dyson-Bessel process are given by (see

Theorem 2 in [6]),

dvi(t) =
∑
j ̸=i

vj(t)

 
(σj(t))

2 + (σi(t))
2

((σj(t))2 − (σi(t))2)2
dβji(t)−

1

2
vi(t)

∑
j ̸=i

(σj(t))
2 + (σi(t))

2

((σj(t))2 − (σi(t))2)2
dt

=
∑
j ̸=i

vj(t)cij(t)dβji(t)−
1

2
vi(t)

∑
j ̸=i

c2ij(t)dt, (3.12)

where βij, 1 ≤ i < j ≤ d is a family of independent one-dimensional Brownian motions, and

βij is skew-symmetry, i.e. βij(t) = −βji(t). For convenience, in above equation (3.12), we

denote cij(t) =
√

(σj(t))2+(σi(t))2

((σj(t))2−(σi(t))2)2
= cji(t), i.e. cij(t) is symmetric.

3.3.3 Previous perturbation bounds

In this section, we present previous perturbation bounds for comparison. In his work in 1912,

Weyl [64] gives a deterministic perturbation bound for singular values σ(A), σ(Â) as follows.

Lemma 3.3.1 (Weyl’s [64] deterministic bound). If E is a deterministic matrix,

max
1≤i≤d

|σi(A)− σi(Â)| ≤ ∥E∥2.

In the following, the Davis-Kahan-Wedin sine theorem addresses the perturbation bound

on the singular vectors v(A), v(Â) under deterministic perturbation.

Lemma 3.3.2 (Davis-Kahan [14], Wedin [63] sine theorem). If E is a deterministic matrix,

sin∠(vi(A), vi(Â)) ≤
∥E∥2

σi(A)− σi+1(Â)
.

When the perturbation matrix E is random, it is more natural to deal with σi(A) −
σi+1(A), the singular value gap of A instead of σi(A) − σi+1(Â), Lemma 3.3.2 implies the

following bound.

Lemma 3.3.3 (Modified sine theorem). For a deterministic or random matrix E,

sin∠(vi(A), vi(Â)) ≤
∥E∥2

σi(A)− σi+1(A)
.

In the modified version, the upper bound involves only the singular values of matrix A.
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3.4 Proofs of Main Results

We present an overview of the proof of Theorem 3.2.1 along with the main technical lemmas

used to prove this result. Section 3.4.1 outlines the different steps in the proof. In Steps 1

and 2 we express the perturbed matrix as a matrix-values diffusion used in the proof. Steps

3, 4, and 5 present the main technical lemmas, and we complete the proof in Step 6. In

Section 3.4.2, we show the full proof.

3.4.1 Outline of proof of Main Theorem 3.2.1

In this subsection, we give the proof outline of the main result Theorem 3.2.1.

1. Step 1: Expressing the perturbed matrix as a matrix-valued Dyson Bessel

process. In order to establish the error bound, we adopt a strategy of representing

the perturbed matrix as a matrix-valued Dyson Bessel process. This involves defining

Φ(t) := A +
√
tG = A + B(t),∀t ≥ 0, where the initial input matrix is denoted

as A = Φ(0). Upon running this process for a duration of time T , the resulting

output matrix is designated as Â = Φ(T ), with G representing a matrix comprising

independent and identically distributed standard normal entries.

2. Step 2: Given Γ = diag (γ1, ..., γd), expressing “Γ2-projected” perturbed ma-

trix as a matrix diffusion Ψ(t). Note that A = UΣV ⊤ and Â = ÛΣ̂V̂ ⊤ are the sin-

gular value decompositions of A and Â, Our goal is to bound ∥V̂ Γ⊤ΓV̂ ⊤−V Γ⊤ΓV ⊤∥F ,
where A⊤A = V Σ⊤ΣV ⊤ and Â⊤Â = V̂ Σ̂⊤Σ̂V̂ ⊤ are eigenvalue decompositions of

A⊤A and Â⊤Â. To bound it, we first define a stochastic process Ψ(t) such that

Ψ(0) = V Γ⊤ΓV ⊤ and Ψ(T ) = V̂ Γ⊤ΓV̂ ⊤. Then we bound the Frobenius-norm dis-

tance ∥Ψ(T ) − Ψ(0)∥F by integrating the stochastic derivative of Ψ(t) over the time

period [0, T ].

At every time t, let Φ(t) = V (t)Σ(t)V (t)⊤ be a singular value decomposition of the

rectangular matrix Φ(t), where Σ(t) is a diagonal matrix with entries σ1(t) ≥ · · · ≥ σd(t)

on the diagonal that are the singular values of Φ(t), and V (t) = [v1(t), · · · , vd(t)] is a
d × d orthogonal matrix whose columns v1(t), · · · , vd(t) are an orthogonal basis of

the right singular vectors of Φ(t). At every time, denote Ψ(t) to be the symmetric

matrix with given eigen values Γ(t)⊤Γ(t) and eigenvectors given by the columns of

V (t): Ψ(t) := V (t)Γ(t)⊤Γ(t)V (t)⊤, ∀t ∈ [0, T ].

3. Step 3: Computing the stochastical derivative dΨ(t) =
∑d

i=1 γ
2
i d(vi(t)v

⊤
i (t)). To

bound the expected squared Frobenius distance E [||Ψ(T )−Ψ(0)||2F ], we first compute

the stochastic derivative dΨ(t) of the matrix diffusion Ψ(t) (Lemma 3.4.2),

dΨ(t) =
d∑

i=1

∑
j ̸=i

(γ2i − γ2j )

ï
cij(t)

2
dβji(t)(vi(t)v

⊤
j (t) + vj(t)v

⊤
i (t))− c2ij(t)dt(vi(t)v

⊤
i (t))

ò
.
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where cij(t) are

4. Step 4: Bounding the singular value gaps. The above equation for the derivative

dΨ(t) includes cij(t), terms with magnitude proportional to the inverse of the singular

value gaps σi(t) − σj(t) for each i, j ∈ [d]. In order to bound these terms, we showed

that the gaps ∆ij(t) in the top k + 1 singular values for any i < j, for time t ∈ [0, T ]

satisfy (Lemma 3.4.3),

∆ij(t) ≥
1

2
(σi − σj),

provided that the initial gaps are sufficiently large enough, see Assumption 3.2.1.

5. Step 5: Integrating the stochastic derivative of dΨ(t) over the time interval

[0, T ]. Next we express the expected squared Frobenius distance E [||Ψ(T )−Ψ(0)||2F ]
as an integral E [||Ψ(T )−Ψ(0)||2F ] = E

î
||
∫ T

0
dΨ(t)∥2F

ó
. Then we apply Itô’s Lemma

to derive an upper bound for this integral. In addition, the upper bound we derive

(Lemma 3.4.5) is

E
[
∥Ψ(T )−Ψ(0)∥2F

]
≤ 32

∫ T

0

E

[
d∑

i=1

∑
j ̸=i

(γ2i − γ2j )
2

(σi − σj)2

]
dt+ 16T

∫ T

0

E

 d∑
i=1

(∑
j ̸=i

(γ2i − γ2j )

(σi − σj)2

)2
 dt. (3.13)

6. Step 6: Complete the proof. Plugging the singular value gap bound ∆ij(t) ≥
1

2
(σi − σj) into the above expression (3.13), and noting that the second term on the

right-hand side of (3.13)is at least as small as the first term, we obtain the bound in

Theorem 3.2.1.

3.4.2 Proof of Main Theorem 3.2.1

Step 3: Computing the stochastical derivative dΨ(t)

Ψ(t) is itself a matrix-valued diffusion. We first decomposite the matrix Ψ(t) as a sum of its

right singular vectors: Ψ(t) =
∑d

i=1 γ
2
i (vi(t)v

⊤
i (t)). Thus we have

dΨ(t) =
d∑

i=1

γ2i d(vi(t)v
⊤
i (t)) (3.14)

We begin by computing the stochastic derivative dvi(t)v
⊤
i (t) for each i ∈ [d], by applying the

formula in (3.12), together with Ito’s Lemma.

The following lemma gives the dynamic of the right singular vectors vi(t)vi(t)
⊤, note that

λi(t) are the eigenvalues of noisy covariance matrix M(t) = Â⊤Â, and βij, 1 ≤ i < j ≤ d is
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a family of independent Brownian motion where βij is skew-symmetry, i.e. βij(t) = −βji(t).
For convenience, we denote cij(t) =

√
λj(t)+λi(t)

(λj(t)−λi(t))2
= cji(t), i.e. symmetric.

The dynamic of vi(t)vi(t)
⊤ is used to derive the dynamic of Ψ(t), the perturbed matrix

projected on the plane whose elements have the given singular values γi, see definition below.

Lemma 3.4.1 (Stochastic derivative of vi(t)vi(t)
⊤). For all t ∈ [0, T ],

d
(
vi(t)v

⊤
i (t)

)
=
∑
j ̸=i

vj(t)cij(t)dβji(t)−
1

2
vi(t)

∑
j ̸=i

c2ij(t)dt.

Proof. The dynamic of right singular vectors [6] are the following:

dvi(t) =
∑
j ̸=i

vj(t)

 
λj(t) + λi(t)

(λj(t)− λi(t))2
dβji(t)−

1

2
vi(t)

∑
j ̸=i

λj(t) + λi(t)

(λj(t)− λi(t))2
dt

=
∑
j ̸=i

vj(t)cij(t)dβji(t)−
1

2
vi(t)

∑
j ̸=i

c2ij(t)dt.

Thus we have

d
(
vi(t)v

⊤
i (t)

)
= (vi(t) + dvi(t)) (vi(t) + dvi(t))

⊤ − vi(t)v
⊤
i (t)

=

(
vi +

∑
j ̸=i

vjcijdβji(t)−
1

2
vi
∑
j ̸=i

c2ijdt

)(
v⊤i +

∑
j ̸=i

v⊤j cijdβji(t)−
1

2
v⊤i
∑
j ̸=i

c2ijdt

)
− viv

⊤
i

= vi(t)

(∑
j ̸=i

v⊤j (t)cij(t)dβji(t)

)
− 1

2
vi(t)v

⊤
i (t)

∑
j ̸=i

c2ij(t)dt+

(∑
j ̸=i

vj(t)cij(t)dβji(t)

)
v⊤i (t)

+

(∑
j ̸=i

vj(t)cij(t)dβji(t)

)(∑
j ̸=i

v⊤j (t)cij(t)dβji(t)

)
− 1

2
vi(t)v

⊤
i (t)

∑
j ̸=i

c2ij(t)dt+ o(dt)

= vi(t)

(∑
j ̸=i

v⊤j (t)cij(t)dβji(t)

)
+

(∑
j ̸=i

vj(t)cij(t)dβji(t)

)
v⊤i (t)− vi(t)v

⊤
i (t)

∑
j ̸=i

c2ij(t)dt

+
∑
k ̸=i

∑
j ̸=i

vk(t)v
⊤
j (t)cik(t)cij(t)dβki(t)dβji(t)

= vi(t)

(∑
j ̸=i

v⊤j (t)cij(t)dβji(t)

)
+

(∑
j ̸=i

vj(t)cij(t)dβji(t)

)
v⊤i (t)− vi(t)v

⊤
i (t)

∑
j ̸=i

c2ij(t)dt

+
∑
k ̸=i

∑
j ̸=i

vk(t)v
⊤
j (t)cik(t)cij(t)δkjδiidt

=
∑
j ̸=i

cij(t)dβji(t)(vi(t)v
⊤
j (t) + vj(t)v

⊤
i (t))−

∑
j ̸=i

c2ij(t)dt(vi(t)v
⊤
i (t)− vj(t)v

⊤
j (t)).
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For a specific set of singular values γi, denote

Ψ(t) =
d∑

i=1

γ2i (vi(t)v
⊤
i (t)) (3.15)

and the dynamic of Ψ(t) is the following. The dynamic of Ψ(t) plays a crucial role in the

next since its integration from [0, T ] gives the desired upper bound.

Lemma 3.4.2 (Stochastic derivative of Ψ(t)). For all t ∈ [0, T ], we have that

dΨ(t) =
d∑

i=1

∑
j ̸=i

(γ2i − γ2j )

ï
cij(t)

2
dβji(t)(vi(t)v

⊤
j (t) + vj(t)v

⊤
i (t))− c2ij(t)dt(vi(t)v

⊤
i (t))

ò
.

Proof.

dΨ(t) =
d∑

i=1

γ2i d(vi(t)v
⊤
i (t))

=
d∑

i=1

γ2i

(∑
j ̸=i

cij(t)dβji(t)(vi(t)v
⊤
j (t) + vj(t)v

⊤
i (t))−

∑
j ̸=i

c2ij(t)dt(vi(t)v
⊤
i (t)− vj(t)v

⊤
j (t))

)

=
d∑

i=1

∑
j ̸=i

γ2i cij(t)dβji(t)(vj(t)v
⊤
i (t) + vi(t)v

⊤
j (t))−

d∑
i=1

∑
j ̸=i

γ2i c
2
ij(t)dt(vi(t)v

⊤
i (t)− vj(t)v

⊤
j (t))

=
1

2

d∑
i=1

∑
j ̸=i

(γ2i − γ2j )cij(t)dβji(t)(viv
⊤
j + vjv

⊤
i )−

1

2

d∑
i=1

∑
j ̸=i

(γ2i − γ2j )c
2
ij(t)dt(viv

⊤
i − vjv

⊤
j )

=
1

2

d∑
i=1

∑
j ̸=i

(γ2i − γ2j )cij(t)dβji(t)(viv
⊤
j + vjv

⊤
i )−

d∑
i=1

∑
j ̸=i

(γ2i − γ2j )c
2
ij(t)dtviv

⊤
i ,

note that the last two equations are because of these observations:

cij(t)dβij(t)(vjv
⊤
i + viv

⊤
j ) = −cij(t)dβji(t)(vjv⊤i + viv

⊤
j )

c2ij(t)dt(viv
⊤
i − vjv

⊤
j ) = −c2ij(t)dt(vjv⊤j − viv

⊤
i )

(γ2i − γ2j )c
2
ij(t)dt(viv

⊤
i − vjv

⊤
j ) = (γ2j − γ2i )c

2
ij(t)dt(vjv

⊤
j − viv

⊤
i ).

Step 4: Bounding the singular value gaps

From the above equation, we need bound estimations for the singular gaps ∆ij(t) = σi(t)−
σj(t) and coefficients cij(t) to analyze the bound when we integrate. Next, we show the

uniform boundness of singular value gaps ∆ij(t) = σi(t)−σj(t) of noisy matrix Â = A+
√
tG

by half of the initial singular value gaps.
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Lemma 3.4.3 (Bound of singular gaps ∆ij(t):). Suppose that Assumption 3.2.1 for (A, k, T, σ, γ)

is satisfied. Then for all t ∈ [0, T ], with probability 1− δ where δ := 1
8dγ2

1
× γ2

1−γ2
d

(σ1−σd)2
, we have

|∆ij(t)| ≥
1

2
(σi − σj) for any i < j.

Proof. With probability 1−δ, by Theorem 4.4.5 of [62], we have ∥G∥2 = 2
√
max{m, d} log(1

δ
) =

2
√
m log(1

δ
). We know |σi(t) − σi| ≤ σi + ||G||2 = σi + 2

√
m log(1

δ
) for any i, therefore, we

bound |∆ij(t)| = |σi(t)− σj(t)| ≥ σi − σj − 4
√
m log(1

δ
) ≥ 1

2
(σi − σj) for any i < j and any

t ∈ [0, T ].

The following proposition shows that the symmetric coefficients cij(t) are bounded by the

reciprocal of the initial singular value gaps.

Lemma 3.4.4 (Bound of coefficients cij(t)). Suppose that Assumption 3.2.1 for (A, k, T, σ, γ)

is satisfied. Then for all t ∈ [0, T ], with probability 1− δ where δ := 1
8dγ2

1
× γ2

1−γ2
d

(σ1−σd)2
, we have

cij(t) ≤
4

σi − σj
, for any i < j.

Proof. From the above bounds of coefficients cij(t), we have with probability 1− δ

cij(t) =

»
σ2
j (t) + σ2

i (t)

|σ2
j (t)− σ2

i (t)|

≤ 2
σj(t) + σi(t)

|σj(t)− σi(t)|(σi(t) + σi(t))

=
2

|σj(t)− σi(t)|
=

2

|∆ij(t)|
≤ 4

σi − σj
, for any i < j.

Step 5: Integrating the stochastic differential equation

Combining the two bounds propositions above, next, we turn to bound the error of the

project matrix process Ψ(t). The following lemma shows that the Frobenius-norm distance

between Ψ(T ) and Ψ(0) can be bounded by two integrals.

Lemma 3.4.5 (Bound the Frobenius error as an integral of Ψ(t)).

E
[
∥Ψ(T )−Ψ(0)∥2F

]
≤ 64

∫ T

0

E

[
d∑

i=1

∑
j ̸=i

(γ2i − γ2j )
2

(σi − σj)2

]
dt+ 32T

∫ T

0

E

 d∑
i=1

(∑
j ̸=i

(γ2i − γ2j )

(σi − σj)2

)2
 dt. (3.16)
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Proof. Let E be the event that |∆ij(t)| ≥
1

2
(σi−σj) for any i < j. By Lemma 3.4.3, we have

P(E) ≥ 1− δ.

We truncate the following error into two integrals. Whenever the event E holds, we have,

||Ψ(T )−Ψ(0)||2F = ||
∫ T

o

dΨ(t)||2F

= ||1
2

∫ T

0

d∑
i=1

∑
j ̸=i

|γ2i − γ2j ||cij(t)|dβji(t)(viv⊤j + vjv
⊤
i )−

∫ T

0

d∑
i=1

∑
j ̸=i

(γ2i − γ2j )c
2
ij(t)dtviv

⊤
i ||2F

≤ 1

2
||
∫ T

0

d∑
i=1

∑
j ̸=i

4|γ2i − γ2j |dβji(t)
σi − σj

(viv
⊤
j + vjv

⊤
i )||2F + ||

∫ T

0

d∑
i=1

∑
j ̸=i

16(γ2i − γ2j )dt

(σi − σj)2
viv

⊤
i ||2F

:=
1

2
I1 + I2. (3.17)

For the first integral I1, define X(t) =
∫ T

0

∑d
i=1

∑
j ̸=i |γ2i − γ2j ||cij(t)|dβji(t)(viv⊤j + vjv

⊤
i ),

we know that

dX(t) =
d∑

i=1

∑
j ̸=i

|γ2i − γ2j ||cij(t)|dβji(t)(viv⊤j + vjv
⊤
i ) :=

d∑
i=1

∑
j ̸=i

Rji(t)dβji(t)

where Rji(t) = |γ2i − γ2j ||cij(t)|(viv⊤j + vjv
⊤
i ), so its [l, r] component is

dX(t)[l, r] =
d∑

i=1

∑
j ̸=i

Rji(t)[l, r]dβji(t).

Thanks to the function f(X) := ||X||2F :=
∑d

l=1

∑d
r=1X

2[l, r] and Ito’s Lemma, we have

df(X) =
d∑

l=1

d∑
r=1

2X(t)[l, r]dX(t)[l, r] +
1

2

d∑
l=1

d∑
r=1

2 < dX(t)[l, r], dX(t)[l, r] >

=
d∑

l=1

d∑
r=1

2X(t)[l, r]
d∑

i=1

∑
j ̸=i

Rji(t)[l, r]dβji(t) +
d∑

l=1

d∑
r=1

d∑
i=1

∑
j ̸=i

R2
ji(t)[l, r]dt.
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And then

E(I1 × 1E) = E [(f(X(T ))− f(X(0))× 1E] = 0 + E[
∫ T

0

d∑
l=1

d∑
r=1

d∑
i=1

∑
j ̸=i

R2
ji(t)[l, r]dt× 1E]

= E[
∫ T

0

d∑
l=1

d∑
r=1

d∑
i=1

∑
j ̸=i

(
|γ2i − γ2j ||cij(t)|(viv⊤j + vjv

⊤
i )[l, r]

)2
dt× 1E]

= E[
∫ T

0

d∑
i=1

∑
j ̸=i

d∑
l=1

d∑
r=1

(
|γ2i − γ2j ||cij(t)|(viv⊤j + vjv

⊤
i )[l, r]

)2
dt× 1E]

= E[
∫ T

0

d∑
i=1

∑
j ̸=i

|||γ2i − γ2j ||cij(t)|(viv⊤j + vjv
⊤
i ))||2Fdt× 1E]

= 2

∫ T

0

E[
d∑

i=1

∑
j ̸=i

(γ2i − γ2j )
2c2ij(t)||(viv⊤j + vjv

⊤
i ))||2Fdt× 1E]

≤ 2

∫ T

0

E[
d∑

i=1

∑
j ̸=i

16(γ2i − γ2j )
2

(σi − σj)2
2dt] = 64

∫ T

0

E[
d∑

i=1

∑
j ̸=i

(γ2i − γ2j )
2

(σi − σj)2
dt], (3.18)

where the last inequality holds by Inequality (3.17).

For the second integral I2, we have

I2 = ||
∫ T

0

d∑
i=1

∑
j ̸=i

(γ2i − γ2j )
16dt

(σi − σj)2
viv

⊤
i ||2F

= ||
∫ T

0

d∑
i=1

∑
j ̸=i

16(γ2i − γ2j )

(σi − σj)2
viv

⊤
i × 1dt||2F

≤
∫ T

0

||
d∑

i=1

∑
j ̸=i

16(γ2i − γ2j )

(σi − σj)2
viv

⊤
i ||2Fdt×

∫ T

0

12dt

= T

∫ T

0

||
d∑

i=1

∑
j ̸=i

16(γ2i − γ2j )

(σi − σj)2
viv

⊤
i ||2Fdt

= T

∫ T

0

d∑
i=1

||

(∑
j ̸=i

16(γ2i − γ2j )

(σi − σj)2

)2

viv
⊤
i ||2Fdt

= T

∫ T

0

d∑
i=1

(∑
j ̸=i

16(γ2i − γ2j )

(σi − σj)2

)2

||viv⊤i ||2Fdt

= 16T

∫ T

0

d∑
i=1

(∑
j ̸=i

(γ2i − γ2j )

(σi − σj)2

)2

dt. (3.19)
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We can express E[||Ψ(T )−Ψ(0)||2F ] as the following sum,

E[||Ψ(T )−Ψ(0)||2F ] = E[||Ψ(T )−Ψ(0)||2F × 1E] + E[||Ψ(T )−Ψ(0)||2F × 1Ec ] (3.20)

Combining (3.18) and (3.19), it follows that

E[||Ψ(T )−Ψ(0)||2F × 1E] ≤ E[||Ψ(T )−Ψ(0)||2F ]

≤ E[
1

2
I1 × 1E + I2 × 1E]

=
1

2
E[I1 × 1E] + E[I2 × 1E]

≤ 32

∫ T

0

E[
d∑

i=1

∑
j ̸=i

(γ2i − γ2j )
2

(σi − σj)2
dt] + 16T

∫ T

0

E[
d∑

i=1

(∑
j ̸=i

(γ2i − γ2j )

(σi − σj)2

)2

]dt.

(3.21)

Moreover, we have

E[||Ψ(T )−Ψ(0)||2F × 1Ec ] ≤ P(Ec)

≤ E[4||Ψ(T )∥2F + 4∥Ψ(0)||2F × 1Ec ]

≤ 8dγ21P(Ec)

≤ 8dγ21 × δ

≤ γ21 − γ2d
(σ1 − σd)2

≤ 32

∫ T

0

E[
d∑

i=1

∑
j ̸=i

(γ2i − γ2j )
2

(σi − σj)2
dt] + 16T

∫ T

0

E[
d∑

i=1

(∑
j ̸=i

(γ2i − γ2j )

(σi − σj)2

)2

]dt,

(3.22)

where the fifth inequality holds since δ ≤ 1
8dγ2

1
× γ2

1−γ2
d

(σ1−σd)2
.

Therefore, plugging (3.21) and (3.22) into (3.20), we have

E[||Ψ(T )−Ψ(0)||2F ] ≤ 64

∫ T

0

E[
d∑

i=1

∑
j ̸=i

(γ2i − γ2j )
2

(σi − σj)2
dt] + 32T

∫ T

0

E[
d∑

i=1

(∑
j ̸=i

(γ2i − γ2j )

(σi − σj)2

)2

]dt.

Step 6: Completing the proof of Main Theorem

The main result (Theorem 3.2.1) gives a new upper bound under the Frobenius-norm error

of the perturbed matrix for the rectangular random matrix approximation problem.

We now complete the proof of the main result.
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Proof of Theorem 3.2.1. To obtain a bound for the error E
î
||V̂ Γ⊤ΓV̂ ⊤ − V Γ⊤ΓV ⊤||2F

ó
, we

need to set a specific T such that Ψ(T ) = V̂ Γ⊤ΓV̂ ⊤ and Ψ(0) = V Γ⊤ΓV ⊤.

From (3.16), we have

E
î
||V̂ Γ⊤ΓV̂ ⊤ − V Γ⊤ΓV ⊤||2F

ó
= E

[
||Ψ(T )−Ψ(0)||2F

]
≤ E

[
||Z(T )− Z(0)||2F

]
≤ 32

∫ T

0

E[
d∑

i=1

∑
j ̸=i

(γ2i − γ2j )
2

(σi − σj)2
dt] + 16T

∫ T

0

E[
d∑

i=1

(∑
j ̸=i

(γ2i − γ2j )

(σi − σj)2

)2

]dt

≤ 64

∫ T

0

E[
d∑

i=1

d∑
j=i+1

(γ2i − γ2j )
2

(σi − σj)2
dt] + 32T

∫ T

0

E[
d∑

i=1

(
d∑

j=i+1

(γ2i − γ2j )

(σi − σj)2

)2

]dt

≤ 64

∫ T

0

E[
k∑

i=1

d∑
j=i+1

(γ2i − γ2j )
2

(σi − σj)2
dt] + 32T

∫ T

0

E[
k∑

i=1

(
d∑

j=i+1

(γ2i − γ2j )

(σi − σj)2

)2

]dt

≤ 64T
k∑

i=1

d∑
j=i+1

(γ2i − γ2j )
2

(σi − σj)2
+ 32T 2

k∑
i=1

(
d∑

j=i+1

(γ2i − γ2j )

(σi − σj)2

)2

≤ O

Ñ
k∑

i=1

d∑
j=i+1

(γ2i − γ2j )
2

(σi − σj)2
+ T

k∑
i=1

(
d∑

j=i+1

(γ2i − γ2j )

(σi − σj)2

)2
é
T. (3.23)

By the Cauchy-Schwarz inequality, we have that(
d∑

j=i+1

(γ2i − γ2j )

(σi − σj)2

)2

=

(
d∑

j=i+1

1

|σi − σj|
×

|γ2i − γ2j |
|σi − σj|

)2

≤

(
d∑

j=i+1

1

(σi − σj)2

)
×

(
d∑

j=i+1

(γ2i − γ2j )
2

(σi − σj)2

)

≤

(
d∑

j=i+1

1

(
√
d)2

)
×

(
d∑

j=i+1

(γ2i − γ2j )
2

(σi − σj)2

)

≤
d∑

j=i+1

(γ2i − γ2j )
2

(σi − σj)2
. (3.24)

Finally, we have

E
î
||V̂ Γ⊤ΓV̂ ⊤ − V Γ⊤ΓV ⊤||2F

ó
≤ O

(
k∑

i=1

d∑
j=i+1

(γ2i − γ2j )
2

(σi − σj)2

)
T.

73



3 - Random Matrix Perturbation Bounds for Low-Rank Approximation

3.4.3 Proof of subspace recovery bound

For the subspace recovery problem, if we plug in γi = 1 for all i ≤ k, and γi = 0 for all i > k

to the Theorem 3.2.1, the mechanism outputs a projection matrix.

Proof of Corollary 3.2.1. To prove Corollary 3.2.1, we plug in γ1 = · · · = γk = 1 and γk+1 =

· · · = γd = 0 to Theorem 3.2.1. There are two cases.

In the first case, A satisfies Assumption 3.2.1, plug in γ1 = · · · = γk = 1 and γk+1 = · · · =
γd = 0 to Theorem 3.2.1 and we get

E
î
||V̂kV̂ ⊤

k − VkV
⊤
k ||2F
ó
= E
î
||V̂ Γ⊤ΓV̂ ⊤ − V Γ⊤ΓV ⊤||2F

ó
≤ O

(
k∑

i=1

d∑
j=i+1

(γ2i − γ2j )
2

(σi − σj)2

)
T

= O

(
k∑

i=1

d∑
j=k+1

1

(σi − σj)2

)
T

≤ O

(
k∑

i=1

d∑
j=k+1

1

(σk − σk+1)2

)
T

≤ O(
kd

(σk − σk+1)2
)T (3.25)

where the first inequality holds by Theorem 3.2.1 and the second equality holds in that

γ1 = · · · = γk = 1 and γk+1 = · · · = γd = 0.

Thanks to Jensen’s Inequality, we have that

E
î
||V̂kV̂ ⊤

k − VkV
⊤
k ||F
ó
≤
√

E
î
||V̂kV̂ ⊤

k − VkV ⊤
k ||2F
ó
≤ O(

√
kd

(σk − σk+1)
)
√
T .

In the second case, A satisfies Assumption 3.2.1 and σi − σi+1 ≥ Ω(σk − σk+1) for all
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i ≤ k, then we have

E
î
||V̂kV̂ ⊤

k − VkV
⊤
k ||2F
ó
= E
î
||V̂ Γ⊤ΓV̂ ⊤ − V Γ⊤ΓV ⊤||2F

ó
≤ O

(
k∑

i=1

d∑
j=i+1

(γ2i − γ2j )
2

(σi − σj)2

)
T

= O

(
k∑

i=1

d∑
j=k+1

1

(σi − σj)2

)
T

≤ O

(
k∑

i=1

d∑
j=k+1

1

(i− k − 1)2(σk − σk+1)2

)
T

≤ O

(
k∑

i=1

d

(i− k − 1)2(σk − σk+1)2

)
T

≤ O

(
d

(σk − σk+1)2

k∑
i=1

1

i2

)
T

≤ O

Å
d

(σk − σk+1)2

ã
T (3.26)

where the first inequality holds by Theorem 3.2.1 and the second equality holds in that

γ1 = · · · = γk = 1 and γk+1 = · · · = γd = 0, the second inequality holds since σi − σi+1 ≥
Ω(σk − σk+1) for all i ≤ k, and the last inequality holds in that

∑k
i=1

1
i2
≤
∑∞

i=1
1
i2
= O(1).

Thanks to Jensen’s Inequality, we have that

E
î
||V̂kV̂ ⊤

k − VkV
⊤
k ||F
ó
≤
√

E
î
||V̂kV̂ ⊤

k − VkV ⊤
k ||2F
ó
≤ O(

√
d

(σk − σk+1)
)
√
T .

3.4.4 Proof of rank-k matrix approximation bound

For the rank-k matrix approximation problem, we plug in γi = σi for all i ≤ k, and γi = σi
for all i > k, the mechanism in Theorem 3.2.1 outputs rank-k matrix approximation.

Proof of Corollary 3.2.2. We first bound the quantity E
î
||V̂ Σ⊤

k ΣkV̂
⊤ − V Σ⊤

k ΣkV
⊤||F
ó
.
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Set γi = σi for i ≤ k and γi = 0 for i > k. Then by Theorem 3.2.1 we have

E
î
||V̂ Σ⊤

k ΣkV̂
⊤ − V Σ⊤

k ΣkV
⊤||2F
ó
≤ O

(
k∑

i=1

d∑
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i=1

k∑
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+
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+
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d∑
j=k+1

σ2
i +

k∑
i=1

d∑
j=k+1

Å
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We next bound the quantity E
î
||V̂ Σ̂⊤

k Σ̂kV̂
⊤ − V̂ Σ⊤

k ΣkV̂
⊤||F
ó
.

In the case E1 where ||G|| >
√

max(m, d) log(1/δ), with probability δ, since ||Σk||F ≤√
kσ1 and ||Σ̂k||F <

√
kσ1(t), we use the “worst-case/deterministic” bound ||Σ⊤

k Σk−Σ̂⊤
k Σ̂k||F <

||Σ⊤
k Σk||F + ||Σ̂⊤

k Σ̂k||F < kσ1 + kσ2
1(t) < 4kσ2

1 and hence E[||Σ⊤
k Σk − Σ̂⊤

k Σ̂k||F ∗ 1E1 ] <

2
√
kσ1 ∗ P (E1) < 4kσ2

1 ∗ δ.

Choose δ < 1
kσ2

1
, then

E[||Σ⊤
k Σk − Σ̂⊤

k Σ̂k||F ∗ 1E1 ] < 4

In the other Case E2 where ||G|| <
√
max(m, d) log(1/δ), with probability (1 − δ),

E[||Σ⊤
k Σk − Σ̂⊤

k Σ̂k||F ∗ 1E2 ] < E[||(Σk − Σ̂k)(Σk + Σ̂k)||F ∗ 1E2 ] < E[
√
T ||Gk|| ∗ (||Σk||F +

||Σ̂k||F ) ∗ 1E2 ] < E[2
√
kTσ1||Gk|| ∗ 1E2 ] < 2

√
kdσ1 log(1/δ)

√
T .
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Finally, put the two cases together:

E
î
||V̂ Σ̂⊤

k Σ̂kV̂
⊤ − V̂ Σ⊤

k ΣkV̂
⊤||F
ó
= E[||Σk − Σ̂k||F ]

= E[||Σk − Σ̂k||F ∗ 1E1 ] + E[||Σk − Σ̂k||F ∗ 1E2 ]

< 4 + 2
√
kdσ1 log(1/δ)

√
T

= O(
√
kdσ1 log(1/δ))

√
T . (3.28)

Combined (3.27) and (3.28), we have
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√
kdσ1 log(1/δ))
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»
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Å
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σk
σk − σk+1

ãã√
T . (3.29)

3.5 Numerical Simulations

In this section, we present numerical simulations that illustrate the theoretical results in

Theorem 3.2.1, and investigate the extent to which the bounds in Theorem 3.2.1 are tight.

Through numerical simulations, we show that the squared Frobenius norm error for the rank-

k approximation problem is linear in the column dimension d but otherwise independent of

row dimension m, confirming that the dependence on d and m in Corollary 3.2.2 is tight.

On the other hand, for the subspace recovery problem, we find that the squared Frobenius

norm error does not always grow with the column dimension d. This suggests that it may

be possible to obtain tighter bounds for the subspace recovery problem for some classes of

input matrices.

3.5.1 Simulations of rank-k matrix approximation

In this section, we present the simulations of the rank-k matrix approximation problem. Our

simulations suggest that the dependence on d of our bound in Corollary 3.2.2 is tight up to

a constant factor.

Specifically, in the simulation of Figure 3.2, the parameters are the following: d = 15, k =

5 where the x-axis is the number of dimension m. When we simulate, m starts from 20 with

step size 500. For every value of m, the number of simulations is 1000.

From Figure 3.2, we learn that as m increases, the ratio of the left-hand side and right-
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hand side in Corollary 3.2.2 inequality (3.9) is nearly constant,

||V̂ Σ̂⊤
k Σ̂kV̂

⊤ − V Σ⊤
k ΣkV

⊤||2F
d∥Σk∥2F + k

∑d
j=k+1(σk

σk
σk − σj

)2
≤ O(1). (3.30)
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Figure 3.2: Simulation of the ratio of l.h.s. and r.h.s. of the bound in Corollary 3.2.2, when
k = 15, d = 15.

In the simulation of Figure 3.3, the parameters are the following: m = 2150, k = 5 where

the x-axis is the number of dimension d. When we simulate, d starts from 20 with step size

300. For every value of d, the number of simulations is 1000.
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Figure 3.3: Simulation of the ratio of l.h.s. and r.h.s. of the bound in Corollary 3.2.2, when
k = 10,m = 2150.

From Figure 3.3, we learn that as d increases, the ratio of the left-hand side and right-hand

side in Corollary 3.2.2 inequality (3.9) is nearly constant.

In the simulation of Figure 3.4, the parameters are the following: m = 850, d = 800.

When we simulate, k starts from 1 with step size 50, and the number of simulations is 1000.
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Figure 3.4: Simulation of the ratio of l.h.s. and r.h.s. of the bound in Corollary 3.2.2, when
m = 850, d = 800.

The results suggest that the dependence of our upper bound for the rank-k matrix ap-

proximation problem in Corollary 3.2.2 is tight in m, d, and k.

3.5.2 Simulations of subspace recovery

In this section, we present the simulations of the subspace recovery problem. In the simulation

of Figure 3.5, the parameters are the following: d = 15, k = 9,m ≥ 20 where the x-axis is the

number of dimension m. When we simulate, m starts from 20 with step size 500. For every

value of m, the number of simulations is 1000. From Figure 3.5, we learn that the quantity

(σk − σk+1)
Ä
∥V̂kV̂ ⊤

k − VkV
⊤
k ∥F
ä
≤ O(

√
d) (3.31)

does not grow with the row dimension m, which is consistent with the bound in Corollary

3.2.1.
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Figure 3.5: Simulation of the error of variable m when k = 9, d = 15.

In the simulation of Figure 3.6, the parameters are the following: m = 850, d = 800 where

the x-axis is the number of dimension k. When we simulate, k starts from 1 with step size

50. For every value of k, the number of simulations is 1000.
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Figure 3.6: Simulation of the error of variable k when m = 850, d = 800.

The results suggest that the dependence of our upper bound for the subspace recovery

problem in Corollary 3.2.1 is tight in both m and k.

In the simulation of Figure 3.7, the parameters are the following: m = 2350, k = 10 where

the x-axis is the number of dimension d. When we simulate, d starts from 20 with step size

400. For every value of d, the number of simulations is 1000.
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Figure 3.7: Simulation of the error of variable d when k = 10,m = 2350.

However, this experiment of Figure 3.7 shows that the estimated result may be improved

because our bound suggests the error mean should go as nearly
√
d as d increases, but from

Figure 3.7, the error mean is nearly constant.

Therefore, one may consider one open question, for what kind of input matrix A will the

perturbation bound be independent of dimension d?

3.6 Conclusion and Future Work

Firstly, an expansion of the analysis is warranted to encompass scenarios involving A +

GC, where the Gaussian noises exhibit non-independence. This question is not a trivial

extension of considering the perturbed matrix AC−1 +
√
tG since the covariance matrix C

will re-weight the top k singular vectors, of no use to capture the top k singular vectors

of A + GC. In this case, we need to investigate the dynamics of singular vectors of A +

GC. Secondly, there is scope for extending the investigation to include rectangular matrix

perturbation bounds, thereby broadening the scope of applicability. Thirdly, efforts can be

directed towards identifying illustrative examples that showcase diverse patterns of singular

value decay, thus enriching the understanding of the phenomenon. Additionally, there is

potential for relaxing the assumption concerning singular value gaps, thereby accommodating

a wider range of practical scenarios. Lastly, exploring the implications of incorporating

more general distributions for the noise, beyond the Gaussian distribution, into the analysis,

presents an intriguing avenue.
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A
Appendix

A.1 Some explicit solutions on LQG-MFGs

In this part, we provide explicit solutions to some LQG-MFGs without the common noise.

Suppose the position of a generic player Xt follows

dXt = αtdt+ σdWt, X0 ∼ N (0, 1).

The goal of the generic player is to minimize the running cost

inf
α∈A

E
ñ∫ T

0

Å
1

2
α2
t + h

∫
R
(Xt − y)2m(t, dy)

ã
dt

ô
,

subject to

mt = Law(Xt), ∀t ∈ [0, T ],

where h ∈ R is a constant.

Denote

V (x, t) = inf
α
E
ñ∫ T

t

Å
1

2
α2
s + h

∫
R
(Xs − y)2m(s, dy)

ã
ds

∣∣∣∣Xt = x

ô
.

Note that the model can be characterized by the Hamilton-Jacobian-Bellman equation cou-

pled by Fokker-Planck-Kolmogorov equation:
∂tV + 1

2
σ2∂xxV − 1

2
(∂xV )2 + F (x,m) = 0, (t, x) ∈ [0, T ]× R,

∂tm− 1
2
σ2∂xxm− ∂x(m∂xV ) = 0, (t, x) ∈ [0, T ]× R,

m0 ∼ N (0, 1), V (x, T ) = 0, x ∈ R,
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where F (x,m) = h
∫
R(x− y)2m(dy).

The monotonicity condition on the source term F in the variable m plays a crucial role in

the uniqueness of the MFG system. A monotone function f : R 7→ R is said to be increasing

if it satisfies (f(x1)−f(x2))(x1−x2) ≥ 0 , and decreasing if −f is increasing. This definition

can be generalized to an infinite-dimensional function F (x,m).

Definition A.1.1. The real function F on R × P2(R) is said to be monotone, if, for all

m ∈ P2(R), the mapping R ∋ x 7→ F (x,m) is at most of quadratic growth, and for all m1,

m2 it satisfies ∫
R
(F (x,m1)− F (x,m2)) d(m1 −m2)(x) ≥ 0.

F is said to be anti-monotone, if (−F ) is monotone.

According to [8], if F is monotone, then MFGs have at most one solution. Interestingly,

the monotonicity of F is dependent on the sign of h.

Lemma A.1.1. F (x,m) = h
∫
R(x − y)2m(dy) is monotone if h < 0, and anti-monotone if

h > 0.

A natural question is how the MFG system behaves differently to the monotonicity of F?

Case I: h > 0

Lemma A.1.2. For h > 0, there exists a solution (may not be unique) to the MFG system

in the form of V (x, t) = f1(t)x
2 + f3(t) and m(t) ∼ N (0, γ(t)), where

f1(t) =

…
h

2

1− e−2
√
2h(T−t)

1 + e−2
√
2h(T−t)

, γ(t) = e−
∫ t
0 4f1(s)ds

Å
1 +

∫ t

0

σ2e
∫ s
0 4f1(u)duds

ã
,

f3(t) =

∫ T

t

(σ2f1(s) + hγ(s))ds.

Case II: h < 0

Lemma A.1.3. For h < 0, there exists a unique solution in (t0, T ] to the MFG system in

the form of V (x, t) = g1(t)x
2 + g3(t) and m(t) ∼ N (0, λ(t)), where

g1(t) = −
…

−h
2
tan
Ä√

−2h(T − t)
ä

, λ(t) = e−
∫ t
0 4g1(s)ds

Å
1 +

∫ t

0

σ2e
∫ s
0 4g1(u)duds

ã
,

g3(t) =

∫ T

t

(σ2g1(s) + hλ(s))ds , t0 = max

Å
0, T − 1√

−2h

π

2

ã
.

Remark

When h > 0, the cost is anti-monotone, and there exists at least one global solution. When

h < 0, the cost is monotone, and there exists at most one solution. Unfortunately, this
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solution lives in a short period. Lemma A.1.3 coincides with the notes in Section 3.8 of [10]

saying that due to the opposite time evolution of the system of HJB-FPK, the existence of

the solution may exist for only a short period.

A.2 Dynkin’s formula for a regime-switching diffusion

with a quadratic function

Since the running cost (1.10) has a quadratic growth in the state variable, the value function

V [m̂](y, x, t) is expected to possess similar growth. Next, we present a version of Dynkin’s

formula for the functions of quadratic growth, which is sufficient for our purpose. Throughout

this subsection, we will use K in various places as a generic constant that varies from line to

line. The notions of this subsection are independent of other parts of the paper.

Lemma A.2.1. Let X be the Rd-valued process satisfying

Xt = X0 +

∫ t

0

Ä
b̃1(Ys, s)Xs + b̃2(Ys, s)αs

ä
ds+

∫ t

0

σ(s)dWs,

where Y is CTMC with a generator

Y ∼ Q = (qij)i,j=1,2,...,κ,

Suppose σ(·), b̃1(y, ·) and b̃2(y, ·) are continuous functions on [0, T ] for every y ∈ Y :=

{1, 2, . . . , κ}. If X0 ∈ L4, α ∈ L4
F and f : Y ×Rd × R 7→ R satisfies, for some large K

sup
y∈Y,t∈[0,T ]

{|f(y, x, t)|+(1+|x|)|∇f(y, x, t)|+(1+|x|)2|∆f(y, x, t)|+|∂tf(y, x, t)|} ≤ K(|x|2+1),

then the following identity holds for all t ∈ [0, T ]:

E [f(Yt, Xt, t)] = E [f(Y0, X0, 0)] + E
ï∫ t

0

(∂t + Lαs +Q)f(Ys, Xs, s)ds

ò
,

where

Laf(y, x, s) =

Å
1

2
Tr
(
σsσ

⊤
s ∆
)
+
Ä
b̃1yx+ b̃2ya

ä
· ∇x

ã
f(y, x, s)

and

Qf(y, x, s) =
n∑

i=1

qy,if(i, x, s).

Proof. It’s enough to show that the local martingale defined by Itô’s formula

M f
t = f(Yt, Xt, t)− f(Y0, X0, 0)−

∫ t

0

(∂t + Lαs +Q)f(Ys, Xs, s)ds (A.1)
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is uniformly integrable, hence is a true martingale.

First, note that from the assumptions on X0 and α, we have

E
[
∥Xt∥4

]
≤ KE

ï
∥X0∥4 +

∫ t

0

∥b̃1(Ys, s)Xs + b̃2(Ys, s)αs∥4ds+
∫ t

0

∥σsWs∥4ds
ò

≤ KE
ï
∥X0∥4 +

∫ t

0

∥Xs∥4ds+
∫ t

0

∥αs∥4ds+
∫ t

0

∥σsWs∥4ds
ò

≤ K +K

∫ t

0

E
[
∥Xs∥4

]
ds,

whereK is a generic constant that varies from line to line. Then, by the Grönwall’s inequality,

E
[
∥Xt∥4

]
≤ KeKt ≤ K,

which implies that {Xt : 0 ≤ t ≤ T} is L4 bounded uniformly in t.

On the other hand, since x 7→ f(y, x, t) is at most quadratic growth uniformly in (y, t),

we conclude that f(Yt, Xt, t) is uniformly L2 bounded from the fact

sup
t∈[0,T ]

E
[
f 2(Yt, Xt, t)

]
≤ K sup

t∈[0,T ]

E
[
∥Xt∥4

]
+K ≤ K.

The uniform L2-boundedness of
∫ t

0
∂tf(Ys, Xs, s)ds follows from our assumption on ∂tf . Sim-

ilarly, since Qf has a quadratic growth uniformly in y and t, andß∫ t

0

Qf(Ys, Xs, s)ds : 0 ≤ t ≤ T

™
is L2 bounded. At last, we have

E
ñÅ∫ t

0

Lαsf(Ys, Xs, s)ds

ã2ô
≤ KE

ñ∫ t

0

ÅÄ
b̃1(Ys, s)Xs + b̃2(Ys, s)αs

ä
· ∇f +

1

2
Tr
(
σsσ

⊤
s ∆f

)ã2
(Ys, Xs, s)ds

ô
≤ KE

ï∫ t

0

∥b̃1(Ys, s)Xs + b̃2(Ys, s)αs∥2∥∇f∥2(Ys, Xs, s)ds

ò
+KE

ï∫ t

0

1

4
∥Tr

(
σsσ

⊤
s ∆f

)
∥2(Ys, Xs, s)ds

ò
≤ KE

ï∫ t

0

∥αs∥4ds
ò
+KE

ï∫ t

0

∥Xs∥4ds
ò
+KE

ï∫ t

0

|∇f |4(Ys, Xs, s)ds

ò
+KE

ï∫ t

0

1

4
∥Tr∆f∥2 (Ys, Xs, s) ds

ò
.

Since ∇f is linear growth in x, the second term supt∈[0,T ] E
î∫ t

0
∥∇f∥4(Ys, Xs, s)ds

ó
is finite.

Together with assumptions on ∆f and α, we have uniform L2-boundedness of
∫ t

0
Lαsf(Ys, Xs, s)ds.
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As a result, each term of the right-hand side of (A.1) is uniform L2-bounded in t, and

thus M f
t belongs to L2

F and this implies the uniform integrability.

A.3 Proof of the property of G

Lemma A.3.1. Define

Et(ϕ) = exp

ß∫ t

0

ϕsds

™
,

and

Gt(x, ϕ1, ϕ2, ϕ3,W ) = xEt(ϕ1 − ϕ2) + Et(ϕ1 − ϕ2)

∫ t

0

Es(−ϕ1 + ϕ2) (ϕ2(s)ϕ3(s)ds+ dWs) ,

where x is a given constant, ϕ1, ϕ2, ϕ3 are RCLL functions on [0, T ]. Then

E
î∣∣Gt(x

1, ϕ1, ϕ
1
2, ϕ

1
3,W )−Gt(x

2, ϕ1, ϕ
2
2, ϕ

2
3,W )

∣∣2ó
≤K
Ç
|x1 − x2|2 + sup

0≤t≤T
|ϕ1

2(t)− ϕ2
2(t)|2 + sup

0≤t≤T
|ϕ1

3(t)− ϕ2
3(t)|2

å
.

Proof. Firstly, it can be shown that G(·, ϕ1, ϕ2, ϕ3,W ) is Lipschitz continuous with respect

to x

E
[∣∣Gt(x

1, ϕ1, ϕ2, ϕ3,W )−G(x2, ϕ1, ϕ2, ϕ3,W )
∣∣] ≤ ∣∣x1Et(ϕ1 − ϕ2)− x2Et(ϕ1 − ϕ2)

∣∣
≤ Et(ϕ1 − ϕ2)|x1 − x2|
≤ K(|ϕ1|∞, |ϕ2|∞, T )|x1 − x2|.

Next, we have

E
î∣∣Gt(x, ϕ1, ϕ2, ϕ

1
3,W )−G(x, ϕ1, ϕ2, ϕ

2
3,W )

∣∣2ó
=

∣∣∣∣Et(ϕ1 − ϕ2)

∫ t

0

Es(ϕ1 − ϕ2)ϕ2(s)(ϕ
1
3(s)− ϕ2

3(s))ds

∣∣∣∣2
≤Et(2ϕ1 − 2ϕ2)

Å∫ t

0

Es(ϕ1 − ϕ2)|ϕ2(s)||(ϕ1
3(s)− ϕ2

3(s))|ds
ã2

≤K(|ϕ1|∞, |ϕ2|∞, T )
Ç∫ T

0

|ϕ1
3(s)− ϕ2

3(s)|ds
å2

≤K(|ϕ1|∞, |ϕ2|∞, T ) sup
0≤t≤T

∣∣ϕ1
3(t)− ϕ2

3(t)
∣∣2 .
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Similarly, for ϕ1
2(·), ϕ2

2(·) ∈ C([0, T ]),

E
î∣∣Gt(x, ϕ1, ϕ

1
2, ϕ3,W )−G(x, ϕ1, ϕ

2
2, ϕ3,W )

∣∣2ó
≤K

∣∣xEt(ϕ1 − ϕ1
2)− xEt(ϕ1 − ϕ2

2)
∣∣2

+K

∣∣∣∣Et(ϕ1 − ϕ1
2)

∫ t

0

Es(−ϕ1 + ϕ1
2)ϕ

1
2(s)ϕ3(s)ds− Et(ϕ1 − ϕ2

2)

∫ t

0

Es(−ϕ1 + ϕ2
2)ϕ

2
2(s)ϕ3(s)ds

∣∣∣∣2
+KE

ñ∣∣∣∣Et(ϕ1 − ϕ1
2)

∫ t

0

Es(−ϕ1 + ϕ1
2)dWs − Et(ϕ1 − ϕ2

2)

∫ t

0

Es(−ϕ1 + ϕ2
2)dWs

∣∣∣∣2
ô

:=K(J1 + J2 + J3).

Note that by the mean-value theorem and the continuity of ϕ1, ϕ
1
2 and ϕ2

2 on [0, T ], we can

get

J1 =
∣∣xEt(ϕ1 − ϕ1

2)− xEt(ϕ1 − ϕ2
2)
∣∣2

= x2
Ä
e
∫ t
0 (ϕ1(s)−ϕ1

2(s))ds − e
∫ t
0 (ϕ1(s)−ϕ2

2(s))ds
ä2

≤ K
(
x,
∣∣ϕ1

2

∣∣
∞ ,
∣∣ϕ2

2

∣∣
∞ , T

)
e
∫ t
0 2ϕ1(s)ds

∣∣ϕ1
2 − ϕ2

2

∣∣2
∞

≤ K
(
x, |ϕ1|∞,

∣∣ϕ1
2

∣∣
∞ ,
∣∣ϕ2

2

∣∣
∞ , T

) ∣∣ϕ1
2 − ϕ2

2

∣∣2
∞ ,

and

J3 = E
ñ∣∣∣∣Et(ϕ1 − ϕ1

2)

∫ t

0

Es(−ϕ1 + ϕ1
2)dWs − Et(ϕ1 − ϕ2

2)

∫ t

0

Es(−ϕ1 + ϕ2
2)dWs

∣∣∣∣2
ô

= E
ï∣∣∣∣Et(ϕ1 − ϕ1

2)

∫ t

0

Es(−ϕ1 + ϕ1
2)dWs − Et(ϕ1 − ϕ1

2)

∫ t

0

Es(−ϕ1 + ϕ2
2)dWs

+ Et(ϕ1 − ϕ1
2)

∫ t

0

Es(−ϕ1 + ϕ2
2)dWs − Et(ϕ1 − ϕ2

2)

∫ t

0

Es(−ϕ1 + ϕ2
2)dWs

∣∣∣∣2
ô

≤ 2Et(2ϕ1 − 2ϕ1
2)

∫ t

0

(
Es(−ϕ1 + ϕ1

2)− Es(−ϕ1 + ϕ2
2)
)2
ds

+ 2
(
Et(ϕ1 − ϕ1

2)− Et(ϕ1 − ϕ2
2)
)2 ∫ t

0

Es(−2ϕ1 + 2ϕ2
2)ds

≤ K
(
|ϕ1|∞,

∣∣ϕ1
2

∣∣
∞ ,
∣∣ϕ2

2

∣∣
∞ , T

) ∣∣ϕ1
2 − ϕ2

2

∣∣2
∞ .
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Lastly, using a similar argument, we have

J2 =

∣∣∣∣Et(ϕ1 − ϕ1
2)

∫ t

0

Es(−ϕ1 + ϕ1
2)ϕ

1
2(s)ϕ3(s)ds− Et(ϕ1 − ϕ2

2)

∫ t

0

Es(−ϕ1 + ϕ2
2)ϕ

2
2(s)ϕ3(s)ds

∣∣∣∣2
=

∣∣∣∣Et(ϕ1 − ϕ1
2)

∫ t

0

Es(−ϕ1 + ϕ1
2)ϕ

1
2(s)ϕ3(s)ds− Et(ϕ1 − ϕ2

2)

∫ t

0

Es(−ϕ1 + ϕ1
2)ϕ

1
2(s)ϕ3(s)ds

+ Et(ϕ1 − ϕ2
2)

∫ t

0

Es(−ϕ1 + ϕ1
2)ϕ

1
2(s)ϕ3(s)ds− Et(ϕ1 − ϕ2

2)

∫ t

0

Es(−ϕ1 + ϕ2
2)ϕ

2
2(s)ϕ3(s)ds

∣∣∣∣2
≤ 2

∣∣∣∣(Et(ϕ1 − ϕ1
2)− Et(ϕ1 − ϕ2

2)
) ∫ t

0

Es(−ϕ1 + ϕ1
2)ϕ

1
2(s)ϕ3(s)ds

∣∣∣∣2
+ 2

∣∣∣∣Et(ϕ1 − ϕ2
2)

Å∫ t

0

Es(−ϕ1 + ϕ1
2)ϕ

1
2(s)ϕ3(s)ds−

∫ t

0

Es(−ϕ1 + ϕ2
2)ϕ

2
2(s)ϕ3(s)ds

ã∣∣∣∣2
≤ K

(
|ϕ1|∞,

∣∣ϕ1
2

∣∣
∞ ,
∣∣ϕ2

2

∣∣
∞ , |ϕ3|∞ , T

) ∣∣ϕ1
2 − ϕ2

2

∣∣2
∞

+ 2

∣∣∣∣Et(ϕ1 − ϕ2
2)

Å∫ t

0

Es(−ϕ1 + ϕ1
2)ϕ

1
2(s)ϕ3(s)ds−

∫ t

0

Es(−ϕ1 + ϕ2
2)ϕ

1
2(s)ϕ3(s)ds

ã
+ Et(ϕ1 − ϕ2

2)

Å∫ t

0

Es(−ϕ1 + ϕ2
2)ϕ

1
2(s)ϕ3(s)ds−

∫ t

0

Es(−ϕ1 + ϕ2
2)ϕ

2
2(s)ϕ3(s)ds

ã∣∣∣∣2
≤ K

(
|ϕ1|∞,

∣∣ϕ1
2

∣∣
∞ ,
∣∣ϕ2

2

∣∣
∞ , |ϕ3|∞ , T

) ∣∣ϕ1
2 − ϕ2

2

∣∣2
∞ .

Sum up the above inequalities for J1, J2 and J3, then

E
î∣∣Gt(x, ϕ1, ϕ

1
2, ϕ3,W )−G(x, ϕ1, ϕ

2
2, ϕ3,W )

∣∣2ó ≤ K
(
x, |ϕ1|∞,

∣∣ϕ1
2

∣∣
∞ ,
∣∣ϕ2

2

∣∣
∞ , |ϕ3|∞ , T

) ∣∣ϕ1
2 − ϕ2

2

∣∣2
∞ .

Thus, we can obtain the desired result.

A.4 Proof of the existence and uniqueness of the ODE

system

Consider the following ODE systema
′
y + C1b̃1yay − C2b̃

2
2ya

2
y +

κ∑
i=1

qy,iai + hy(t) = 0,

ay(T ) = gy,

(A.2)
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for y ∈ Y = {1, 2, . . . , κ}, where C1, C2, hy, gy are in R+. We need to show the existence and

uniqueness of the solution to (A.2). Define T
(N)
y as

T (N)
y [a](t) =

[(
gy +

∫ T

t

(
hy(s) + C1b̃1y(s)ay(s)− C2b̃

2
2y(s)a

2
y(s) +

κ∑
i=1

qy,iai(s)

)
ds

)
∧N

]
∨ 0,

where a = [a1, a2, . . . , aκ]
⊤. Let D = {f ∈ C([0, T ]) : 0 ≤ supt∈[0,T ] f(t) ≤ N}. Note that

T
(N)
y (y ∈ Y) maps Dκ to Dκ.

Lemma A.4.1. For fixed N , there exists a unique solution in C([0, T ]) to

a = T (N)
y [a]. (A.3)

Proof. Denote the norm ∥f∥k =
∥∥ektmaxy∈Y |fy|

∥∥
∞, where k needs to be determined later

and f is a κ dimensional vector with entry of fy, y ∈ Y , which is equivalent to the infinite

norm. Define the iteration rule a
(n+1)
y = T

(N)
y

î
a
(n)
y

ó
for y ∈ Y . Note that∥∥∥ekt Äa(n+1)

y (t)− a(n)y (t)
ä∥∥∥

∞

≤ sup
t∈[0,T ]

ekt
∫ T

t

Å
C1

∣∣∣b̃1y∣∣∣
∞

∣∣a(n)y (s)− a(n−1)
y (s)

∣∣+ C2

∣∣∣b̃2y∣∣∣2
∞

∣∣∣Äa(n)y (s)
ä2

−
Ä
a(n−1)
y (s)

ä2∣∣∣
+

κ∑
i=1

qy,i

∣∣∣a(n)i (s)− a
(n−1)
i (s)

∣∣∣) ds
≤ sup

t∈[0,T ]

ekt
∫ T

t

Å
C1

∣∣∣b̃1y∣∣∣
∞

∣∣a(n)y (s)− a(n−1)
y (s)

∣∣+ 2NC2

∣∣∣b̃2y∣∣∣2
∞

∣∣a(n)y (s)− a(n−1)
y (s)

∣∣
+

κ∑
i=1

qy,i

∣∣∣a(n)i (s)− a
(n−1)
i (s)

∣∣∣) ds
≤ sup

t∈[0,T ]

ekt
∫ T

t

e−ks

Å
C1

∣∣∣b̃1y∣∣∣
∞
+ 2NC2

∣∣∣b̃2y∣∣∣2
∞
+ κmax

i∈Y
|qy,i|
ã∥∥a(n) − a(n−1)

∥∥
k
ds

≤
C1

∣∣∣b̃1y∣∣∣
∞
+ 2NC2

∣∣∣b̃2y∣∣∣2
∞
+ κmaxi∈Y |qy,i|

k

∥∥a(n) − a(n−1)
∥∥
k
.

Choose k > C1

∣∣∣b̃1y∣∣∣
∞
+ 2NC2

∣∣∣b̃2y∣∣∣2
∞
+ κmaxi∈Y |qy,i|, then

∥∥a(n+1) − a(n)
∥∥
k
≤
C1

∣∣∣b̃1y∣∣∣
∞
+ 2NC2

∣∣∣b̃2y∣∣∣2
∞
+ κmaxi∈Y |qy,i|

k

∥∥a(n) − a(n−1)
∥∥
k
,

which gives us a contraction mapping from Dκ to Dκ. Hence, by the Banach fixed point

theorem, there exists a unique solution to (A.3).
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Next, we want to show that for large enough N , the solution to (A.3) is also the solution

to (A.2).

Lemma A.4.2. For

N ≥ eKT

(
κ∑

y=1

gy +
κ∑

y=1

∫ T

0

hy(s)ds

)
,

where K := C1maxy∈Y

∣∣∣b̃1y∣∣∣
∞

+ maxi∈Y
∑κ

y=1 |qy,i|, the solution a(N) to (A.3) satisfies the

inequalities

0 ≤ gy +

∫ T

t

(
hy(s) + C1b̃1y(s)a

(N)
y (s)− C2b̃

2
2y(s)

Ä
a(N)
y (s)

ä2
+

κ∑
i=1

qy,ia
(N)
i (s)

)
ds ≤ N

(A.4)

for all t ∈ [0, T ], where y ∈ Y.

Proof. For simplicity of notations, ay is used instead of a
(N)
y for y ∈ Y if there is no confusion.

First, for y ∈ Y , we prove the positiveness of ay by contradiction. Suppose ay (y ∈ Y)

are not positive functions on [0, T ]. Since a1 is continuous and a1(T ) = g1 > 0, there exists

some τ1 ∈ [0, T ] as the closest time to T such that a1(τ1) = 0. Note that finding such a τ1
is possible. Let tn ∈ [0, T ] be a non-decreasing sequence such that a1(tn) = 0, there exists

some τ1 such that tn → τ1 < T as n → ∞ since a1 is continuous and a1(T ) = g1 > 0. By

the continuity of a1, we have a1(τ1) = 0, which gives the desirable point τ1. Then for all

t ∈ (τ1, T ], a1(t) > 0 and it implies that a′1(τ1) > 0. In this case, plugging t = τ1 to (A.2),

we have

a′1(τ1) = −h1(τ1)−
κ∑

i ̸=1

q1,iai(τ1) > 0,

which implies there is some y ∈ Y and y ̸= 1 such that ay(τ1) < 0. Without loss of generality,

we let a2(τ1) < 0. Since a2 is continuous on [0, T ] and a2(T ) = g2 > 0, from the intermediate

value theorem, there exists some τ2 ∈ (τ1, T ) such that a2(τ2) = 0 and a′2(τ2) > 0. This

indicates that a′2(τ2) = −h2(τ2) −
∑κ

i ̸=2 q2,iai(τ2) > 0 by plugging t = τ2 back to (A.2), and

it implies that there is some y ∈ Y and y ̸= 1, 2 such that ay(τ2) < 0 since we already know

a1(τ2) > 0. Without loss of generality, we can let a3(τ2) < 0. By induction with the same

argument, there is a τκ ∈ (τκ−1, T ) such that aκ(τκ) = 0 and a′κ(τκ) > 0, which gives

a′κ(τκ) + hκ(τk) +
κ∑

i ̸=κ

qκ,iai(τκ) = 0.

But it contradicts the fact that

a′κ(τκ) > 0, hκ(τk) > 0, qκ,i > 0, ai(τκ) > 0

for i ∈ {1, 2, . . . , κ− 1}. Thus the positiveness of ay on [0, T ] for all y ∈ Y is obtained.
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Next, we prove the upper boundness for the integral in (A.4). Note that for all t ∈ [0, T ]

and y ∈ Y , let τ = T − t, we have

a′y(τ) = hy(τ) + C1b̃1y(τ)ay(τ)− C2b̃
2
2y(τ)a

2
y(τ) +

κ∑
i=1

qy,iai(τ),

and thus

κ∑
y=1

a′y(τ) =
κ∑

y=1

hy(τ) + C1

κ∑
y=1

b̃1y(τ)ay(τ)− C2

κ∑
y=1

b̃22y(τ)a
2
y(τ) +

κ∑
y=1

κ∑
i=1

qy,iai(τ)

≤
κ∑

y=1

hy(τ) + C1max
y∈Y

∣∣∣b̃1y∣∣∣
∞

κ∑
y=1

ay(τ) +
κ∑

y=1

κ∑
i=1

|qy,i|ai(τ)

≤
κ∑

y=1

hy(τ) +
κ∑

i=1

(
C1max

y∈Y

∣∣∣b̃1y∣∣∣
∞
+

κ∑
y=1

|qy,i|

)
ai(τ)

≤
κ∑

y=1

hy(τ) +K
κ∑

i=1

ai(τ),

where

K := C1max
y∈Y

∣∣∣b̃1y∣∣∣
∞
+max

i∈Y

κ∑
y=1

|qy,i|

with
∑κ

y=1 ay(T ) =
∑κ

y=1 gy. By Grönwall’s inequality, for all τ ∈ [0, T ],

κ∑
y=1

ay(τ) ≤ eKT

(
κ∑

y=1

gy +
κ∑

y=1

∫ T

0

hy(s)ds

)
.

Hence ay(t) ≤ eKT
Ä∑κ

y=1 gy +
∑κ

y=1

∫ T

0
hy(s)ds

ä
for all t ∈ [0, T ] and y ∈ Y . Hence, when

eKT

(
κ∑

y=1

gy +
κ∑

y=1

∫ T

0

hy(s)ds

)
≤ N,

(A.4) holds.

Lemma A.4.3. With the given of hy, gy ∈ R+, y ∈ Y, there exists a unique solution to the

Riccati system (1.12).

Proof. The existence, uniqueness, and boundedness of the solution to ay (y ∈ Y) are shown in

Lemma A.4.1 and Lemma A.4.2. Given (ay : y ∈ Y), the coefficient functions by (y ∈ Y) form

a linear ordinary differential equation system. Their existence and uniqueness are guaranteed

by Theorem 12.1 in [2]. Similarly, with the given of (ay, by : y ∈ Y), the coefficient functions

cy, ky (y ∈ Y) also form a linear ordinary differential equation system. Applying the Theorem

12.1 in [2], we can obtain the existence and uniqueness of cy, ky (y ∈ Y).

94



A.5 - Multidimensional Problem on LQG-MFGs

A.5 Multidimensional Problem on LQG-MFGs

In this subsection, we consider the multidimensional problem, which is a straightforward

extension of the previous one-dimensional setup. The same type of Ricatti system to char-

acterize the equilibrium and the value function is obtained, and we have a similar result as

the Theorem 1.2.1.

Suppose that Xt, Wt and αt take values in Rd, and all components ofWt are independent.

Suppose that the dynamic of the generic player is given by

Xt = X0 +

∫ t

0

Ä
b̃1(Ys, s)Xs + b̃2(Ys, s)αs

ä
ds+Wt.

Consider the cost function

J [m](y, x, t, µ̄, ν̄)

=E
ñ∫ T

t

Å
1

2
∥αs∥22 + h(Ys, s)

∫
Rd

∥Xs − z∥22m(dz)

ã
ds+

g(YT )

∫
Rd

∥XT − z∥22m(dz)

∣∣∣∣Xt = x, Yt = y, µt = µ̄, νt = ν̄

ò
=E
ñ∫ T

t

Å
1

2
α⊤
s αs + h(Ys, s)

(
X⊤

s Xs − 2µ⊤
s Xs + νs · 1d

)ã
ds+

g(YT )
(
X⊤

T XT − 2µ⊤
TXT + νT · 1d

)∣∣Xt = x, Yt = y, µt = µ̄, νt = ν̄
]
,

where m is the joint density function in Rd, and µ, ν take value in Rd. For y ∈ Y , define the

Riccati system 

a′y + 2b̃1yay − 2b̃22ya
2
y +

κ∑
i=1

qy,iai + hy(t) = 0,

b′y +
Ä
2b̃1y − 4b̃22yay

ä
by +

κ∑
i=1

qy,ibi + hy(t) = 0,

c′y + day + dby +
κ∑

i=1

qy,ici = 0,

k′y − 2b̃22ya
2
y + 4b̃22yayby + 2b̃1yky +

κ∑
i=1

qy,iki = 0,

ay(T ) = by(T ) = gy , cy(T ) = ky(T ) = 0.

(A.5)

Theorem A.5.1 (Verification theorem for MFGs). There exists a unique solution (ay, by, cy, ky :

y ∈ Y) for the Riccati system (A.5). With these solutions, for t ∈ [0, T ], the MFG equilibrium

path follows X̂ = X̂[m̂] is given by

dX̂t =
Ä
b̃1(Yt, t)X̂t − 2b̃22(Yt, t)aYt(t)

Ä
X̂t − µ̂t

ää
dt+ dWt, X̂0 = X0,
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with equilibrium control α̂t = −2b̃2(Yt, t)aYt(t)
Ä
X̂t − µ̂t

ä
, where

dµ̂t = b̃1(Yt, t)µ̂tdt, µ̂0 = E[X0].

Moreover, the value function U is

U(m0, y, x) = ay(0)x
⊤x− 2ay(0)x

⊤[m0]1 + ky(0)[m0]
⊤
1 [m0]1 + by(0)[m0]

⊤
2 1d + cy(0)

for y ∈ Y.

The proof is similar to the one-dimensional problem, and we don’t show the details here.

A.6 Comparison to bound (3.10) in Theorem 18 of S.

O’Rourke et al.[35]

When

√
r√
d
≥ (

σk+1

σk
− k − 1

k
), we have (

σk+1

σk
− k − 1

k
)
√
d ≤

√
r and

√
d

k
≤

√
r +

√
d− σk+1

σk

√
d

=
√
r +

√
d(
σk − σk+1

σk
)

≤
√
r +

√
m(

σk − σk+1

σk
) +

m

σk

rearrange terms leading to

√
d

σk − σk+1

≤ k(

√
r

σk − σk+1

+

√
m

σk
+

m

σk(σk − σk+1)
).

Therefore we proved that when

√
r√
d
≥ (

σk+1

σk
− k − 1

k
), i.e. (

σk+1

σk
− k − 1

k
)2d ≤ r ≤ d, or

when the matrix A is full rank, i.e. r = d, the bound obtained by Corollary 3.2.1 inequality

(3.7) is at least as good as bound shown in Theorem 18 of S. O’Rourke et al. [54].
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