Scalable Multi Dimensional Threat Analysis

A Major Qualifying Project submitted in partial fulfillment of the requirements for the Degree of
Bachelors of Science in Worcester Polytechnic Institute

March 25, 2016
Authors
John Baia
Peter Leondires
Kevin Martin

Dalton Tapply

Faculty Advisor

Professor Elke Rundensteiner

Sponsor Organization

ACI Worldwide

Sponsor Advisor

Eric Gieseke

This report represents the work of WPI undergraduate students submitted to the faculty as
evidence of completion of a degree requirement. WPI routinely publishes these reports on its
website without editorial or peer review. For more information about the projects program at

WPI, please see http://www.wpi.edu/academics/Projects



http://www.wpi.edu/academics/Projects

Abstract

ACI Worldwide provides fraud detection services on high volume transaction data
streams. In this project, WPI collaborates with ACI Worldwide to explore how this data can be
stored in a graph database and then visualized using open-source big data technologies. Using
Titan, transaction data is stored as a graph. The graph is then visualized in several fraud-centric
display formats with the Vis JavaScript library to provide fraud analysts a unique way of
analyzing transactions. We call this graphical analysis tool GraphView. Achievements of this
project include being able to ingest millions of nodes into a graph database and then displaying
portions of the graph using innovative visual displays. Optimizations were made by distributing

the system over a six node cluster for faster ingestion and graph query support.
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1. Introduction

ACI Worldwide is a company that processes electronic transactions for banks, retailers,
and financial institutions around the globe. As a company that is responsible for processing its
customers’ finances, it is critical that ACI provides effective solutions for fraud detection to
protect its customers.

Since ACI processes a vast number of transactions daily, transaction throughput is a high
priority. Detecting fraud requires analyzing not only the suspect transaction but also
investigating previous transactions to make comparisons and determine legitimacy. Looking up
historical data, making comparisons, and calculating additional properties on this data can be
expensive and may limit the number of transactions that can be processed. The previous MQP
with ACI created a horizontally scalable system that could ingest transaction data, perform fraud
detection, and do it faster than ACI’s current systems'.

As a next step, our focus now was to create a system that supports new kinds of analysis
by feeding the transaction data into a graph database. A graph database is a database in which
relationships are stored as a collection of nodes and edges. Building off of the previous MQP
team’s work, we continued to leverage open source big-data technologies. Using Titan® and
Cassandra’, we created a graph that can ingest data from their high-throughput system and then
detect fraud within the graph. Organizing data into a graph allows analysts to better discern
relations between transactions. Beyond the specific queries that we may leverage using a graph

database, the structure also allows the opportunity for visualization. In creating a graphical view

'Li, T. & Pham, J. & Zhu, J. 2015. WP1. WPI Major Qualifying Project: Fraud Detection Using Storm.
2 Apache Cassandra (version 2.0.8). 2015. Apache. http://cassandra.apache.org/
3 Titan with Hadoop 2 (version 0.5.4). 2014. Aurelius. http:/thinkaurelius.github.io/titan/



of transactions and their different attributes we aim to provide a powerful tool for fraud analysts

to use in identifying fraud.

2. Background
This section discusses fraud detection, big data, how the two are connected, and what has
been done related to these topics in the previous projects working with ACI. We also explore

some of the tools we used to accomplish our goals, and our reasoning for using those tools.

2.1 Event Model

We had to consider how data would be handled as it entered our system. Our event
model, shown in Figure 2.1, describes the relationships between different parts of our data. When
we receive an event from a financial institution, they are classified as either demographic events
or transactions. A transaction is any financial exchange a customer makes, while a demographic
event occurs when a part of our existing dataset is modified (e.g., a customer changes her email
address, a new customer signs up with a bank, etc.). Every event has one or more dimensions
associated with it. These dimensions could be accounts, banks, terminals, or customers
themselves. A dimension is defined by the metadata. Entities, which could be either an event or a
dimension, correspond to the vertices in our graph, while edges represent a relationship between

different entities.
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Figure 2.1 Event Model showing the relations between events, dimensions, and their properties

The properties of our entities are either defined as attributes or features. Attributes are
information about an entity that is defined before we receive the events. Examples of attributes
are a customer’s name or date of birth and a terminal’s location or unique ID number. Each of
these would be defined by the institution that sends us the events. Features differ from attributes
because they are calculated after we receive the events. A feature could be the average
transaction amount or time since the last transaction. Entities always have at least one property
and can potentially have infinitely many. Once our data is defined, we are able to add it to our

graph to be stored, queried, and visualized.

2.2 Past MQPs Sponsored By ACI Worldwide
WPI and ACI Worldwide worked together in both 2013 and 2014 to improve fraud

detection technology. These projects focused on modeling and feature extraction. They also



worked on feature calculations and computation of fraud patterns. The work done by both of

these teams helped us better understand the data we were working with.

2.2.1 Complex Event Processing (MQP 2013-2014)

In 2013, the team that worked with ACI set the stage for both the 2014 MQP and this
project. They created a Complex Event Processing (CEP) system as a candidate to potentially
replace the event ingestion system that ACI used at the time. Using the CEP engine, Esper, they
created a real-time, vertically scalable system that replaced the slow SQL queries being used in
the old system and translated them into Esper’s event processing language. Performance-wise,
this system was an improvement compared to ACI’s old system, and it gave valuable insight for

future performance developments.

2.2.2 Fraud Detection Using Storm (MQP 2014-2015)

Last year’s team improved upon the 2013 project by significantly increasing
performance. They made use of distributed computing systems, Kafka* and Storm°, to increase
the speed of event ingestion and feature computation. They used the stream processing system,
Kafka, to ingest a throughput of over 200,000 transactions per second. They also made use of
Storm’s distributed system to calculate 271 features in 76 milliseconds for each transactions®.
These features were used to help human analysts determine if there is an instance of fraud. Their

entire system is horizontally scalable, so that the performance can increase as the distributed

* Apache Kafka. 2015. Apache. http://kafka.apache.org/
5 Apache Storm. 2015. Apache. http://storm.apache.org/
8Li, T. & Pham, J. & Zhu, J. 2015. WP1. WPI Major Qualifying Project: Fraud Detection Using Storm.
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cluster size increases. We learned from their usage of Kafka and Storm to maximize the

performance of our event ingestion and feature calculation.

2.3 Fraud Detection

According to the Institute of Internal Auditors, fraud is defined as “Any illegal act
characterized by deceit, concealment, or violation of trust. These acts are not dependent upon the
threat of violence or physical force. Fraud is perpetrated by parties and organizations to obtain
money, property, or services; to avoid payment or loss of services; or to secure personal or

business advantage™’

. Fraud can be responsible for not only monetary loss, but can also damage
a company's reputation, as well as its relationship with its customers. With an increasing number
of fraud related crimes, as shown in Figure 2.2, businesses need to take priority in defending
themselves and the customers they serve. The first step in protection against fraud is fraud
prevention, but where fraud cannot be prevented, we need methods for detection. Machine

learning and statistics serve as effective tools for detecting fraud and are the most common

strategies®.

7 Institute of Internal Auditors. 2012. Standards. Page 21.
https://na.theiia.org/standards-guidance/Public%20Documents/IPPF%202013%20English.pdf
8 Bolton & Hand, 2002, Statistical Fraud Detection: A Review, 235-249
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Figure 2.2. Number of complaints received by the Federal Trade Commission's Consumer Sentinel Network’.

Currently, to detect fraud, ACI’s system generates a score that represents the probability
of fraud associated with each transaction based on known fraud cases. From there, a rule engine
applies a number of rules to this score and the customer’s profile to determine whether or not the
transaction needs to be flagged. This system is limited in that it only consults the previous 30
days of activity and only uses a fraction of the available features.The current system also lacks a
visual approach for the analysts to look through the data. The previous MQP team focused on
developing a system to increase the speed of event ingestion and rule calculation, though it is not

in use yet.

2.4 Detecting Fraud with Graphs
Fraud analysts can be faced with overwhelming amounts of data at once. Visa reports

having a system capable of handling 56,000 transaction messages per second'’. Currently the

? Federal Trade Commission. 2015, February. Consumer Sentinel Network Data Book for January - December 2014.
12 Visa. 2015. Visa Inc. Reports Fiscal Second Quarter 2015 Net Income of $1.6 billion or $0.63 per Diluted Share.
http://investor.visa.com/news/news-details/2015/Visa-Inc-Reports-Fiscal-Second-Quarter-2015-Net-Income-of-16-b
illion-or-063-per-Diluted-Share/default.aspx

10


http://investor.visa.com/news/news-details/2015/Visa-Inc-Reports-Fiscal-Second-Quarter-2015-Net-Income-of-16-billion-or-063-per-Diluted-Share/default.aspx
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data exists in relational databases. In addition to the data, there are a number of calculations,
called features, which are available to the analysts. Analysts are responsible for examining the
data and the calculated features to determine if a transaction is fraudulent. The current methods
involve manually sifting through the data that is most likely to be fraudulent. There is too much
data to process for an analyst to read through all of it, so it has to be reduced as much as possible.

Combinatorics is the study of counting and arranging objects with specific attributes,
such as arranging data by similar properties''. If the transaction data could be arranged in a
graph, using this theory, it could reveal patterns in the data that could not otherwise be seen. We
have successfully created a graph database to store transactions that allows analysts to more
easily find patterns in the data. By using graphs to group these patterns in data, analysts are able
to find any new transactions that are outside of the graph’s existing trends'?. For example, if a
customer typically made transactions of small amounts in the United States and suddenly made a
large transaction in another country, this transaction instance could be seen as breaking the

customer’s existing pattern and could be potentially fraudulent.

2.5 Tools

For this project we needed a variety of tools to help us accomplish our goal, namely
Titan, Cassandra, Rexster, Elasticsearch and Vis.js. Each tool needs to work with distributed
computing systems, so that we can process large numbers of events quickly. First we need a

graph database that is scalable, since we will have millions of transactions displayed in our

" Agarwal, Udit & Singh, Umesh Pal. 2009. Graph theory.
http://common.books24x7.com.ezproxy.wpi.edu/toc.aspx?bookid=34046.

12 Brath, R., & Jonker, D. 2015.In Graph analysis and visualization discovering business opportunity in linked data.
http://proquest.safaribooksonline.com.ezproxy.wpi.edu/book/databases/business-intelligence/9781118845875/chapte
r-1-why-graphs/h1_845844c01_0002_html?uicode=wpi
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graph. For the graph database we use Titan, which uses Cassandra as its backend. We need a way
to access the graph remotely, for which we use Rexster. To use Titan effectively we need an
index backend, for which we use Elasticsearch. Finally, we need a visualization tool so that
analysts have a convenient way to work with the data. For visualization we use the JavaScript

library Vis.js.

2.5.1 Titan/Cassandra

Titan" is a distributed graph database optimized for storing and querying graphs. Titan
relies on a separate storage backend, for which we used Cassandra'®, a distributed database
manager. Titan implements Blueprints, which is a set of test suites and interfaces specifically for
graph models. A number of graph databases are Blueprints compatible and use the Blueprints
suite.

In An Empirical Comparison of Graph Databases” , researchers Jouili & Vansteenberghe
compared multiple graph databases across different workloads and conditions'®. Some of
Titan-Cassandra’s alternatives that Jouili & Vansteenberghe tested were OrientDB, SparkSee
(DEX), Neo4lJ, and Titan with BerkeleyDB as a backend instead of Cassandra. Each of these
different tools have their own strengths and weaknesses. For graph traversals, the authors found
that Neo4J is indisputably better than the others stating “it outperforms all the other candidates,
regardless of the workload or the parameters used”. To compare graph traversals the authors

tested neighborhood breadth first exploration for the different tools. The test randomly selected a

'3 Titan with Hadoop 2 (version 0.5.4). 2014. Aurelius. http:/thinkaurelius.github.io/titan/

4 Apache Cassandra (version 2.0.8). 2015. Apache. http:/cassandra.apache.org/

'8 Jouili & Vansteenberghe, 2013, An empirical comparison of graph databases,
http://www.odbms.org/wp-content/uploads/2014/05/an-empirical-comparison-of-graph-databases.pdf
16 Ibid.
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vertex from the graph, and then recorded the time it took to retrieve all of the vertices that were a
certain number of hops away from the original vertex. For this test Titan with Cassandra
performed the worst as its retrieval times increased much more than those of other graph
databases as the number of hops increased.

When we consider workloads where clients are making concurrent requests to the graph,
Jouili and Vansteenberghe’s tests show that Titan with Cassandra performs faster than Neo4J
and the other graph databases'’. When adding edges or reading and updating vertices, Titan and
DEX (Sparksee) significantly outperform the other tools, each performing the tasks in a second
or less, compared to Neo4J which took as long as 20 seconds to add edges, or 60 seconds to read
and update vertices.'®. When concerned with read-only workloads Titan-Cassandra fails to
deliver, but for read-write workloads Titan-Cassandra and DEX outperform the other databases"
. For our purposes we needed a tool that could deliver performance for both read and write
operations and that scales well with concurrent access. Beyond the comparisons Jouili and
Vansteenberghe did, we wanted a distributed system to leverage the previous team’s work, so
Titan-Cassandra was the obvious choice for us since it scales well with multiple clients, delivers

read-write performance, and makes use of distributed systems.

17 Jouili & Vansteenberghe, 2013, An empirical comparison of graph databases,
http://www.odbms.org/wp-content/uploads/2014/05/an-empirical-comparison-of-graph-databases.pdf.
'8 Ibid.

1% Ibid.
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2.5.2 Elasticsearch

Elasticsearch® is a distributed and scalable index search backend that can run side by side
with Titan?! and Cassandra®. With an Elasticsearch backend, Titan is able to create multi-key
indices on graph data, making it possible to query separate objects in a database based on
multiple conditions. In Titan, the multi-key indices are called mixed indices, which can be
created via the Gremlin console. Below is an example of how to create a mixed index over the

date and transaction amount vertex properties.

mgmt.buildIndex('byTrxAmt', Vertex.class).addKey(trxAamt).buildCompositeIndex()
mgmt.buildIndex('dateAndtrxAmt', Vertex.class).addKey(date).addKey(trxAmt).buildMixedIndex

("search")

mgmt.commit()

Figure 2.6 Gremlin code for indexing

Elasticsearch not only provides the capability to produce multi-key indices, but it can also
be distributed across a cluster to improve performance. Elasticsearch operates as a self-contained
cluster. This is one of the key reasons we chose Elasticsearch over its competitor, Apache Solr?,

another index backend Titan supports, which depends on a ZooKeeper** server to function.

20 Elasticsearch (version 1.2.1). 2015. Elasticsearch. https://www.elastic.co/

2! Titan with Hadoop 2 (version 0.5.4). 2014. Aurelius. http:/thinkaurelius.github.io/titan/
22 Apache Cassandra (version 2.0.8). 2015. Apache. http://cassandra.apache.org/

2 Apache Lucene. 2015. Apache. http://lucene.apache.org/solr/

24 Apache ZooKeeper. 2016. Apache. https://zookeeper.apache.org/
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2.5.3 Rexster

Rexster” is a graph server used to allow access to a Titan graph through a REST API as
well as Rexster’s custom binary protocol RexPro. Rexster is a necessary component to be able to
access the graph database remotely. Rexster provides a number of configuration options that
allow each instance to be easily customized to suit the intended user. For example, one Rexster
instance could allow only read only access, whereas another could permit read and write access,
yet both are using the same graph. Rexster can also be configured to ensure high-availability,

guaranteeing that the graph can still be accessed remotely even in the event that a node fails.

2.5.4 Vis.js

The tool we used to visualize our graph was a browser based JavaScript library called
Vis.js*. Vis allowed us to display our graph in a browser. It also provides tools to manipulate the
graph’s nodes and edges. We were able to change the size of nodes and their color using Vis’s
built-in functions. Vis holds the information for the nodes and edges such as the node properties.
This allowed us to dynamically populate a website based on what was currently in the graph.

One alternative visualization tool that we considered was D3, another JavaScript library.
D3 was equally capable of visualization as Vis is, but where D3 fell short was how it placed
nodes on the screen. The way D3 and Vis arrange their nodes is based on physics built into each
of the libraries. We found that D3’s built in physics did not lead to coherent layouts like Vis’s
engine did. Vis also provides tools to zoom in and out, center our graph, and drag and drop our

nodes.

% Rexster (version 2.6.0) 2014. Tinkerpop. https:/github.com/tinkerpop/rexster/wiki/Downloads
% Vis.js (version 4.15.1). 2015. Vis js. http://visjs.org/
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2.6 Terminology
Event

An event is any kind of transaction or demographic event. A demographic event is an
update to a dimension. An example demographic event would be a customer changing their
name.
Dimension

Dimensions are the entities associated with a transaction. A graph could be populated
with dimensions such as retailers, location, time, or customers.
Properties

Properties are either values that describe an event or are computed from existing values.
These values represent information about the different dimensions. They can be divided into two
groups, attributes or features.
Attributes

Attributes are properties of an event that are found in the original data.
Features

Features are properties of an event that are computed from attributes or other features. An
example of a feature would be the average transaction amount for a customer for the last 30 days.
Semantic Tag

A semantic tag is a naming convention for specifying dimensions and properties within
the graph. Data from different types of transactions will have their own field names and formats.
Those field names are mapped to semantic tags, a definition for fields across datasets, so that

different data formats may feed into the same graph.

16



Synthetic Nodes
A synthetic node is a node that is generated based on the properties of different events or
dimensions. These nodes are created after the ingestion of data, and are used to connect existing

nodes which share the assigned properties.

3. System Methodology
This section details our implementation plans and the design of the GraphView

architecture. Next we explain each component, and how they connect with one another.

3.1 Motivations

The goal of this project was to provide a tool to fraud analysts to improve their ability to
find patterns in transaction data. Since the analysts currently use a non visual approach to
analyze the data, displaying the data as a graph would allow the user to find patterns that they
might otherwise miss. We wanted to leverage open-source big-data technologies as well as use a
horizontally-scaling, distributed computing system in order to introduce these technologies to the
company. Open source software is cheaper than proprietary software and usually has many
different users committing to the project. The benefit of having many committers is that many of
the bugs are likely to have been worked out. Using big data technologies allows us to store vast
amounts of information and compute information about it. The company was interested in big
data technology and wanted to use our project as a test run for future projects. In order to store

large amounts of data, we needed a distributed graph backend, so that we could spread the data

17



storage and computation load onto multiple systems. Overall, we expect that our GraphView

system will increase the accuracy and performance of fraud detection at a lower cost.

3.2 GraphView Architecture

Data
Stream

v

Ingestion
Engine

Transforms data

to graph
Titan & Metadata
Cassandra Manager

Cluery to get Sends

subgraph and Metadata

Titan response '
Query o
Service (ep——-—_p VlsSLJEa:inzgon -— Analyst

(Gremlin) Requests

subgraph, and
listens for
response

Figure 3.1 GraphView architecture

The architecture for the GraphView system consists of the entities in Figure 3.1, starting
with the Ingestion Engine. The Ingestion Engine is responsible for taking in events, and inserting

them into our graph database. We use Titan for our graph database, which uses Cassandra as its

18



storage backend. The graph can then be queried using the Query Service, which uses an
implementation of a Rexster Client to run Gremlin queries on Titan.

The Query Service is responsible for querying Titan for a subset of the graph, and
outputting Vis compatible JavaScript to the Visualization Service. The Visualization Service
represents the user interface that a fraud analyst will use to interact with the graph. Requests
made through the Visualization Service will iterate through the architecture chain to generate the

appropriate response.

3.3 Metadata Manager

Metadata, in the form of JSON, is stored in the Metadata Manager. The Metadata
Manager is an HTTP Server wrapper around the Metadata Manager, allowing anyone to make
HTTP calls for specific metadata at request. The goal is to allow any application to easily access
the most up-to-date metadata.

There are two types of metadata, generic and decoration. Generic metadata contains any
information relating to transaction file format types such as transaction field offsets, lengths,
names, semantic tags, etc. This is the information stored in file descriptors for each specific
transaction format type. Using this metadata, systems would be able to parse out any specific
transaction fields from a transaction tuple.

Decoration metadata contains information relating to a specific system, which in our case
is our graph metadata. For instance, our graph decoration metadata holds semantic tags,
dimension types, vertex and edge information, etc. This metadata is used to define how the event

data should be transformed into nodes and edges by the ingestion engine. For example, using the
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metadata we tell the ingestion engine to create edges between customer vertices and their
account vertices.

The Metadata Manager also has the functionality to join general and decoration metadata
by Semantic Tag. When general and decoration metadata is requested, a joined version is
returned. Decoration metadata fields that don’t have a matching Semantic Tag field, in the
general metadata to be joined, get dropped. Whereas general metadata fields get added to the

joined metadata regardless.

3.3.2 Metadata

As explained above, there are two categories of metadata, generic and decoration. In our
case we use graph decoration metadata and a generic metadata set. The generic metadata
describes general information about the data files. The graph metadata maps those generic entries
to the graph specific information of each. All metadata is stored in CSVs for easy modification

and are converted to JSON during runtime of the metadata manager.

3.3.3 Generic Metadata

Each entry in the generic metadata has a semantic tag, field name, offset, length, data
type, description, and dictionary. Semantic tags are used to map any field names specific to that
file into properties that can be shared across different data sets. The field name represents the
original field name from the data set. The offset is the byte offset for the beginning of the field
for each line in the data set. Length is the total length of the field. Using the offset and length the

actual value of a field is determined during ingestion. The data type defines what class to parse

20



the field value as. Description is an optional descriptor for the field name, and dictionary
represents a set of possible values if the field only accepts certain values. An example entry can

be found in Figure 3.2.

Offset Field Length SemanticTag DataType Dictionary  Description
40 CAED BIM B CARD BIN String

Figure 3.2 General metadata example entry for CARD_BIN field

3.3.3 Graph Metadata

Each entry in the decoration metadata has a semantic tag, dimension type, owner
dimension, data type, index boolean, and an array of edges. Like in the general metadata, a
semantic tag defines a field that is common across different data set formats. In this case the
semantic tag is used to connect the graph and general metadata. Dimension type represents the
kind of dimension that the entry belongs to. The owner dimension specifies the semantic tag of
the dimension that the entry should be applied to as a property. If the owner dimension is null,
this indicates that the entry represents a vertex. The data type is used as in the general metadata
to specify class types in order to correctly generate properties and parse values. We use the
vertex keyword to signify that the entry is a dimension. The hasIndex column is a boolean value
to define whether or not this field should be indexed or not. This allows customizability of the
index configuration of the graph. The edges column is used for any vertex to define the outgoing
edges from it. It exists in a JSON array style format where each edge in the array is defined with
a label for the edge, and the semantic tag of the vertex to attach to. The format is such that an
edge is created from the entry it’s declared in outgoing to the semantic tag specified. An example

entry can be found below in Figure 3.3.
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SemanticTag DimensionType OwnerDimension Datalype hasindex Edges
CUST ID Customer NULL Vertex TRUE [{Labellinked, SemanticTag: TRX_ID}

Figure 3.3 Graph metadata example entry for CUST_ID semantic tag

3.4 Ingestion Engine

The ingestion engine is responsible for translating data into nodes, edges, and their
properties within the graph. The ingestion relies heavily on the Metadata Manager which
provides all of the necessary information to properly parse the data.

Given a set of events, the engine first retrieves the metadata associated with these data.
This includes both the general metadata about how to parse the incoming event, as well as the
graph metadata describing how each field gets translated into the graph. Any metadata must be
created prior to ingestion as it describes how the data is processed.

Once the metadata is acquired the graph metadata is used to determine the property keys,
indexes, vertex labels and edge labels of the graph, all part of the graph’s schema. For each field
in the metadata a property key is generated based on the given data type and defined such that
each node with the property can only have one instance, one value of that property. Any field
that needs to be indexed has a composite index created for it based on that field’s property key. If
the field is a vertex identifier we specify uniqueness using the index builder. This helps enforce
that vertices cannot have any duplicates in the graph. So if for example an Account vertex is
based on some account number, that value for the account number property must be unique
throughout the entire graph. Finally to finish preparing the schema we create vertex and edge

labels based on the metadata.
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Once the schema has been created the actual data ingestion takes place. Each event is
either a demographic event or a transaction. Parsing the data sets is dependent on the provided
general metadata. From the metadata the Ingestion Engine determines the length and offset
associated with a field and can parse the specific data out from the data file. In the datasets used,
an event is terminated with a carriage return, so the data can be easily parsed considering each
line as a separate event.

As has been described before, there are two kinds of events to consider: Demographic
events and Transactions. Demographic events are focused on updating existing nodes or edges
in the graph. The engine’s process is to find the specific node (or edge) to be changed, and then
update the specified properties. In this case a node would be found based on its semantic tag. So
to change a customer’s email for example, a customer id would be necessary to identify the
correct node. Then the new email value as well as the emails property key name would be used
to change the property.

Transaction events are much more involved as each transaction can have a large number
of vertices and edges to create each with their own properties. The metadata is sorted to ensure
that Vertex fields are processed first. This ensures that we have obtained/created all of the
vertices related to the current transaction, meaning we can easily add the remaining properties,
and create the edges. As the vertices are found or created for the transaction, they’re stored in a
Hashmap to use for property and edge creation. This limits the number of reads to the graph,
which can be very expensive relative to the other ingestion operations. The updates to the graph

are committed after each transaction.
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The ingestion engine exists as a java application. By replicating it across different
machines, multiple instances can be loading data into the same graph simultaneously. Data files
are split evenly based on the number of nodes, and then those files are distributed among the
nodes. Once data is distributed, one machine is used to setup the graph. In this stage the graph
may be shut down and cleared of any previous data if necessary, and it will have its schema
defined based on the metadata. Once the schema has been created from each machine an instance
of the Ingestion Engine is executed, simultaneously loading the separate data sets into Titan. A

diagram of this process is seen below in Figure 3.3.

DATA
.-- ,. Diata partitioned into equally sized files
DaTA, DATA DATA
PT.1 PT. 2 PT. 3
Each fikz is ingested using it's own
ingestion engine inatance
Ingestion Ingestian Ingestion
Engine Engirse Engine

All af e ingestion enging inslances
T ino e Titan database
Simultaneously

t Tnanﬂ
Figure 3.3 Diagram of simultaneous ingestion process

3.5 Query Service
The Query Service is primarily responsible for taking a graph filter query, obtaining a
subgraph from Titan, and transforming that subgraph into valid Vis JavaScript. The process

starts with the Query Service getting an HTTP request from the Visualization Service to obtain
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the subgraph for a specified query. The HTTP request contains a JSON formatted query which

1S

converted into a Gremlin query and then executed using an implementation of a Rexster Client.

The returned edges and vertices are ingested into our custom subgraph class where we can
manipulate and convert them into Vis JavaScript.
The JSON query is formatted as the following:
QueryObject = {groups:
[{dimensionType: “”,
properties:

(1524

[ {property Type: “”,

(134

propertyValue: “”,

(132

operator:

il
11,

(134

edgeLevels: “”,
vertexLimit: “’}

The group list contains a variable number of dimension property comparators. Each
group will create a separate Gremlin query, whereby each vertex and edge will be added to the
subgraph; a logical “OR”. Each item in the group list has a dimension type and a list of
properties. Each item in the property list contains a property type of which it is filtering by,
property value of which it is comparing to, and the operator of which it is using to compare.

These are the parameters for filtering the Titan graph.
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The edge levels parameter is used to obtain outward level edges and vertices, from the
initial set of vertices that are obtained from the dimension list filtering. The Query Service will
generate a new Gremlin query for each level, run the queries, and add the new vertices and edges
to the subgraph. If there are duplicate edges or vertices returned from these queries, the java
subgraph class will ensure that they do not get added.

Finally the limit parameter is there as a hard limit for the number of vertices returned in
the subgraph. The subgraph class won’t allow vertices to be added to it if the size of the list of
vertices is equal to the limit. In order to be able to return a limited subgraph that takes into
account edge levels requested, there is a process in which the gremlin queries have a gremlin
limit tagged onto them. In detail, the queries are all set to return the first, Limit / (NumOfGroups
+ NumOfLevels). The outcome of this is that the subgraph will contain some vertices from each
query group, and vertices and edges from each level, instead of just returning the first Limit

number of vertices.

3.6 Visualization Service

The visualization service is a blanket term for the entire web application that we have
created. The purpose of the web application is to allow the user to visualize the graph we have
created. Upon accessing the web app, the user will be met with a login screen where they can
either login with existing credentials or create new ones. The login screen provides two
advantages to our system, security and customizability for each user. The security aspect of the
page is fairly self-explanatory. The data in the graph that this service visualizes for the user is

highly sensitive data and should only be accessible to specific people. We were also interested in
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giving each user the option to easily save graphs that they use often, and the best way to do this

was to create user-specific capabilities.

Please Log In

test ‘

Don't have an account? Register
Figure 3.5 Login page
After a user logs in, they are presented with a page that allows them to query the Titan

database for a graph. There is no feasible way for the client to render every node in the database,
therefore we needed a way to allow the user to decide what nodes they want rendered. This page
allows the user to interface with the database without needing to learn the complicated querying
language. The user can use this page to either query the database for a new graph, query the
database for a saved query, or simply load a saved graph without needing to wait for it to be
updated. This page sends a JSON to the Query Service which responds with a list of edges and

vertices formatted in JavaScript for our Visualization Service to render.
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Choose Saved Subgraph:

Nothing selected - x

Display Saved Subgraph

Query for Subgraph:

Dimension:
none
Property:

none

Edge Levels:| 0

Vertex Limit: 10000

+ - Submit Query

Figure 3.6 Querying page to get sub- graph based on user input

The Query Service sends this JavaScript to another web page that renders the graph. An
example of a rendered graph is seen in Figure 3.7. This page allows you to interact with the
graph in various ways. You can filter this graph by sending queries to it, through an interface
similar to the previous page. This will highlight all nodes on the graph that meet the designated
query. The dimension and property drop down menus used to build the queries are populated
based on the graph’s metadata which is retrieved from the metadata service. You can also
manually select nodes by clicking on them. Data about selected nodes can be found in a panel on
the right side of the page. Some of this data is also available when you hover over a node. There

are also a variety of options on the page, so that the user can customize the graph in order to find
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patterns they could not otherwise find. Some of these options include coloring or sizing the

nodes by various properties.

O

Merchant

Website

Transaction

Account

@ Build Time Vertex Count Edge Count @
@ @ @ 348518ms 7240 7664 @ @

Figure 3.7 Visualization page example graph

3.7 Titan Cassandra Configuration
Titan is configured using Cassandra as its storage backend, and uses Elasticsearch as its

indexing backend. The graph database is an abstraction of the underlying Cassandra database.
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The entire configuration is a cluster of nodes, each running Cassandra, Elasticsearch, as well as a
Rexster server which is necessary to provide remote access to Titan. The configuration can be
seen in Figure 3.8. The reason for hosting a Rexster server on each client is to provide a local
connection between the server and the Cassandra database regardless of which node a user is

trying to communicate with.

Rexster
Server

il
@

ElasticSearch

—_—

{ Cassandra Cassandh
= &2 - B
ElasticSearch Elastlc.":‘.aa?'

o

Cassandra

+4
|

Elarsticﬁf?'

Rexster
Server

Figure 3.8 Cluster configuration for Cassandra, Elasticsearch and Rexster
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Figure 3.9 Diagram of the simultaneous ingestion process feeding into the Cassandra cluster

As described earlier, during ingestion each node can be configured to load a piece of the
data set, allowing for concurrent additions to the graph to improve performance. A diagram of
this can be seen above in Figure 3.9. All graph configurations are defined so that each ingestion

engine instance will connect to the local Cassandra and Elasticsearch hosts to avoid some

network latency.



3.8 Titan-Hadoop

Titan includes its own version of Hadoop, Titan-Hadoop, which can be used to run
map-reduce functions across the graph. This functionality allows for features to be computed
across the graph on a per-node basis. It also means that computations can consider not only a
node’s properties, but a node’s neighbor and its own properties. These functions allow for a wide
range of potential manipulations after the data has already been ingested. Two example uses are

explained in the following sections.

3.8.1 Fraud Index Calculation

Hadoop scripts were used to determine the fraud index, the likelihood of fraud, for any
given node. Using the ReD Shield Data set, a set of sanitized online transactions that were made
over a 30 day period, any transaction that was deemed fraudulent has been labeled as such. The
labels were as follows, a “B” meant the transaction was fraudulent, and a “G” meant the
transaction was legitimate. A mapreduce job was run to analyze all of the transaction dimensions
labels and specify their fraud index. Any transaction dimension labeled with a “B” was given a
1.0 fraud index rating, indicating it is guaranteed to be fraudulent. Those transactions that were
labeled with a “G” were given a 0.0 fraud index, meaning it is guaranteed to be legitimate. Once
all of the transaction dimensions labels have been parsed and the fraud indices specified, another
job is used to average the fraud index for a node based on all of its neighbors’ fraud indices.
Transaction vertices do not have their indexes recalculated as they have already been definitively

labeled as being fraudulent or not.
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Using the query functionality it’s possible to narrow down vertices based on the fraud
index to find suspicious activity. Due to the nature of the data and the fraud within it, it can be
hard to spot fraudulent activity because it is so infrequent compared to legitimate activity. In
several thousand transactions there may be only a handful that end up being fraudulent. To
contrast the difference Figures 3.10 and 3.11 show selections of fraud indices less than 0.1, and
those greater than 0.1. Figure 3.12 displays a selection of fraud indices greater than 0.5.
Comparing Figures 3.11 and 3.12 we lose the highlighting on the computed fraud for the
Merchant and synthetic nodes. This is a disadvantage of using an average, however it could be
solved by basing computations of ACI’s feature computations and rules that they already have in
place. Alternative calculations of the fraud index could prevent the index from being averaged
down so low for vertices with a large number of edges like Merchants for example. It would
provide a better spread for the fraud indices throughout the graph, which could yield more

meaningful results and simpler analysis.

Account
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synthetic
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® ®
@O s8620ms 2037 2331 e®

Figure 3.10 Graph with all fraud indices < 0.1 selected (black nodes)
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Figure 3.11. Graph with all fraud indices >0.1 selected (black nodes)

o
o N:?
)

3%
QWY

TN
25602000
3;&;

Build Time Vertex Count Edge Count @

98620ms 2037 2331 @ @

a

Figure 3.12 Graph with all fraud indices >0.5 selected (black nodes)
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The addition of the fraud index to the vertex properties lead to the ability to alter the
graph in order to better see where fraud is occurring. These features are the ability to color all of
the vertices based on their fraud index, and the ability to size nodes based on their fraud. For
color, red indicates the highest levels of fraud, and green the lowest, while the middle ranges
between yellow and orange. The size adjustments increase the size of vertices as their risk level
increases. An example of each is below in Figure 3.13 and Figure 3.14. In Figure 3.13 the largest
nodes are the most fraudulent. Each large transaction is one with a 1.0 fraud index. The
neighboring accounts are also guaranteed fraudulent because they are only associated with a bad
transaction. The Merchant is connected to a number of good and bad transactions, so it is not at
as high as risk as the Accounts in this case. The same graph can be seen in Figure 3.14, this time
with nodes colored based on their fraud. In this example the Merchant is a slightly darker green,

and those nodes that are most fraudulent are a bright red to indicate their risk.
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Figure 3.13 Graph with vertices sized based on their fraud index (larger nodes indicate higher fraud index)
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Figure 3.14 Graph with vertices colored based on their fraud index

3.8.2 Synthetic Nodes

In addition to the creation and modification of vertex properties, Titan-Hadoop can be

used to create new vertices and edges. A common strategy fraud analysts use in identifying fraud

is to observe not just single fields of data, but a combination of a number of fields. To implement

this idea, new nodes can be created based on certain properties. A common example is to pair the

MCC code and zip code and determine which pairs are at risk. In this case the job would create

new synthetic nodes for all MCC codes and zip codes, and then connect these new synthetic

nodes to the dimensions who own those two properties. Once the edges are created the fraud
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index is calculated based on each synthetic node’s neighbors. From this specific example it could
be determined if a specific kind of retailer was being targeted in certain areas. Any number of
properties could be combined to create complex synthetic nodes to help understand the
relationships within the data, and better identify fraud. A small subgraph displaying a synthetic
node made up of MCC_Code and Zip Code connected to fraudulent transactions is shown below

in Figure 3.15.

Merchant

Transaction

MCC_CODE: 7372
MERCHANT_ZIP: 53111

Account

fraudIndex: 0.3333333333333333

‘ dimensionType: synthetic

synthetic

@ Build Time Vertex Count Edge Count Q':!\

@ (5\ é\\ 302ms 13 12 (‘—:\ @\
Figure 3.15. Graph with a synthetic node before its fraud is calculated

In Figure 3.16 the subgraph above is seen as part of the much larger graph. We query the
graph for any synthetic node with a fraud index greater than 0.0 to find all nodes that are
potentially fraudulent. We see the at risk node highlighted, and with its properties listed on the
right. Figure 3.17 shows an alternate view of the graph, displaying the highlighted synthetic node
which connects to a merchant with the same properties (blue node). By focusing on the synthetic

node we created, we can see the associated merchant and that merchant’s fraud index.
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Figure 3.16. Graph with fraudulent synthetic nodes highlighted
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Figure 3.17. Graph with fraudulent synthetic nodes, zoomed in on highlighted node
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3.9 Applications and Use Cases

The ability to visualize transaction data allows users to see relationships in data and be
able to accurately identify fraud. A user could query our graph database using the web interface
to find all customers and see everything that they are connected to. These customers could have
relationships with other customers, accounts, transactions, and vendors. Once a user has queried
for customers, they will be able to see a visualized graph of all the relationships that the
customers have. They could then pinpoint a single customer and see their individual
relationships, along with any calculated fraud index that is associated with them.

For example, if a user knew that a customer was fraudulent, they could query the graph
database for that customer’s name or account number. They could specify how many edge levels
out they wanted, in order to see who or what is related to this customer. When this query is
visualized, the user would be able to search that graph for the specific customer and also be able
to see their relationships. Using the fraud index provided with the transaction data, the system
can also modify the color and size of the nodes based on it. These modifications can make it

clear to the analyst which elements are fraudulent.

3.9.1 Users

There are three different kinds of users who will be using GraphView: admins, data
scientists, and fraud analysts. Admins are responsible for ensuring that the Titan database is
functioning properly at all times. They would have the capabilities to amend any issues that may
occur during use, specifically during Event Ingestion. Second are data scientists, users that are

observing the data but not specifically to analyze fraud. Data scientists would have the ability to
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improve the system by adding new features, and by creating and applying machine learning
models. Data scientists would also be able to view the graph, query it, manage the metadata, and
import external data sets. Lastly are the fraud analysts. The analysts will be able to query the
graph, view portions of the data as a subgraph, and apply available models to the dataset. See

Figure 3.18 for a diagram of the current capabilities each kind of user will have.

Export/Save
subgraph

Data
Scientist

Fraud
Analyst

Create Features

Figure 3.18 User privileges
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4. Evaluation

For the project to be successful we need to provide a tool that not only allows for novel
analysis of the data, but one that is also accessible and useful to ACI’s customers. There are a
number of performance factors to address as well. This section addresses our metrics for success,
as well as the results of our testing.

To analyze the results we test the different components using varying data subsets from
the ReD Shield Transaction data set. The Ingestion Engine, Query Service, and Visualization
Service are each tested separately to evaluate their performance and provide insight into how the

cluster sizes, number of transactions, and indices affect the results.

4.1 Metrics
The Ingestion Engine, Query Service, and Visualization Service are the components that

require performance testing.

4.1.1 Ingestion Engine

For the ingestion engine the primary concern is the time it takes to ingest a specific
dataset. To prove that the system is horizontally scalable it is necessary to display some
performance increase as cluster sizes are scaled up. It is also necessary to show that the system is
capable of ingesting large datasets. To confirm these, the system will be evaluated based on

different sized data sets and different sized clusters.
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4.1.2 Query Service

For the query service the most important factor is how long it takes for the query to
complete. So what the total time is for the service to submit the query and receive a response
from the database, the application latency. These tests are completed on different sized clusters
and different graph sizes to examine the performance differences. As the cluster size increases

the performance is expected to improve as well.

4.1.3 Visualization Service

The visualization service has a performance metric in terms of how quickly the graph can
be displayed once a query has been submitted. The most import metric for the visualization
however is based on testimonials from potential end users. Fraud analysts, modelers, and other
potential users already have some tools and practices in place to analyze transaction data and
detect fraud. Their opinion is important in determining if this tool would make identifying fraud

or analyzing transactions in general easier, or if it would extend their abilities in any way.

4.2 Setup

For the complete evaluation the system was tested using a sanitized data set from ReD
Shield consisting of labeled transaction data. The system was deployed on clusters of varying
sizes on ACI’s machines. The ingestion process was timed under different combinations of
cluster size, and number of transactions. Once each ingestion test was complete the performance
of the Query Service and Visualization Service was tested on the ingested graph. This evaluated
the performance of each piece of the pipeline for different cluster configurations, and number of

transactions.
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4.2.1 ReD Shield Data and Metadata Configuration

The ReD shield data is a set of online transactions made over a 30 day period. The data
was sanitized of any personally identifiable information to protect the customers. The data is
formatted such that transactions are separated by line, and that fields within each transaction are
specified by a certain offset within the line, and a length.

The metadata was defined such that there are five dimensions (vertices) and five edges
associated with each transaction. Figure 4.1 below displays the configuration of edges and
vertices for a single transaction. For each transaction, there is some account making the
purchase, signified by the edge directed from the Account to the Transaction. The account
contains both account and customer information.. Finally edges are created from the transaction
to the merchant where the purchase was made, and the specific website where the purchase was
made. Each dimension has a number of additional properties that provide more useful
information. In total the metadata converts 33 fields from the transaction data into nodes, edges
and their properties. Table 1 in Appendix C describes some of the more important fields that are

considered during ingestion and specifies which dimension they belong to.
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Figure 4.1 Diagram of vertex and edge configuration for a single transaction (directed edges indicate

from->to relationship)

4.2.2 Cluster Configuration

The evaluation was performed on three different sized clusters consisting of one, two,
and six nodes. Each node was configured to run Cassandra, Elasticsearch, and Rexster.

For each Cassandra cluster each node was allotted the recommended 256 tokens, and
each cluster was given one seed node. Paired with each Cassandra node was an Elasticsearch
instance. All of the Elasticsearch instances were then clustered together. The Elasticsearch
configuration and Cassandra configurations can be found in Appendix B.

Multiple Rexster servers were hosted per cluster to not only provide more availability,
but to ensure local host access from any Rexster instance to the database. The specific graph

configuration can be found below, and the full configuration file can be found in Appendix B.
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=graph=

=graph-name=graph=</graph-name=
=<graph-type=com.thinkaurelius.titan.tinkerpop.rexster.TitanGraphConfiguration</graph-type=
=graph-read-only>false</graph-read-only=

<properties=>

<storage.backend> cassandra</storage.backend>
=storage.hostname= 10.5.25.143</storage.hostname=
<storage.batch-loading> true</storage.batch-loading=>
<schema.default=none</schema.default=
=cache.db-cache=true</cache.db-cache=
<cache.db-cache-clean-wait>50</cache.db-cache-clean-wait>
=cache.db-cache-time=10000=</cache.db-cache-time=
=<cache.db-cache-size=0.25</cache.db-cache-size>

<storage.index
<storage.index
<storage.index
<storage.index
<storage.index
<storage.index
<storage.index

<storage.index.

.search.
.search.
.search.
.search.
.search.
.search.
.search.
search.

backend=>elasticsearch</storage.index.search.backend>
hostname>10.5.25.143</storage.index.search.hostnames|
cluster-name>esclusterl</storage.index.search.cluster-name>
port>9200</storage.index.search.port>
elasticsearch.client-only=false</storage.index.search.elasticsearch.client-only=
elasticsearch.local -mode>true</storage.index.search.elasticsearch.local -mode>
directory=index_storage</storage.index.search.directory=
client-sniff=false</storage.index.search.client-sniff=

<script.disable_dynamic=true</script.disable_dynamic=
=force-index>true=</force-index=>

=/properties=
=extensions=
<allows=>

<allow>tp:gremlin</allow=>

=/allows>
=/extensions=>
</graph=>

Figure 4.2 Rexster graph configuration

4.2.3 Graph Configuration

The graph configuration defines storage, index, and schema specifications, and is used to

tell the ingestion engine how to open the correct graph. Graph configurations are also how

graphs can be accessed locally using the gremlin shell. Each graph is configured the same,

varying only the hostnames for the indexing backend and storage backend to connect to the

correct cluster.
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4.2.4 Software Versions

Software Version Number License

Titan 0.5.4 Apache 2.0

Cassandra 2.0.8 Apache 2.0

Elasticsearch 1.2.1 Apache 2.0

Rexster 2.6.0 Apache 2.0

Vis.js 4.15.1 Apache 2.0 and MIT
4.3 Results

All of the results are based on the setup and configurations described above. Ingestion

Engine and Query Service testing was done to evaluate performance times for a number of

different configurations. The visualization service was tested using graphs of varying vertex and

edge sizes.

It is important to note that the ACI machines use a Storage Area Network (SAN). SANs

are not recommended for use with Cassandra as they create a single point of failure, and the

overall performance suffers?’. Unfortunately there was no alternative for deploying a cluster so

the following performances are not ideal.

27 Apache Cassandra, Anti-Patterns in Cassandra,
https://docs.datastax.com/en/cassandra/2.1/cassandra/planning/architecturePlanning AntiPatterns_c.html
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4.3.1 Ingestion Engine Performance Testing

In the table below are the results of the ingestion performance testing. The ingestion
testing proves the hypothesis that the larger the cluster, the faster data can be ingested. The
cluster is used to accomplish simultaneous loading which shows significant performance
increases as the cluster size grows. Looking at the one million transaction ingestions, we have
ingestion times of 28,753 seconds, 17,505 seconds, and 6,314 seconds for the one, two, and six
node clusters respectively. Comparing these results, the six node cluster is over 4.5 times faster
than the single node cluster, and over 2.7 times faster than the two node cluster. This is important
to show that the system is indeed horizontally scalable and that ingestion can be accomplished in
a reasonable timeframe even for large datasets. It’s important to note that these time increases are
in spite of the SAN that the clusters are built on. Deploying Cassandra on a cluster where each
node can have a separate, local disk would surely provide even greater performance because the
locality of data removes the need for large volumes of data to be transferred over the network.

All results can be found in Table 1 below.
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# Total # Total # # Nodes in Time to Time to
Transactions Vertices Edges Cluster ingest (ms) ingest (s)
1000 2702 4331 1 18152 ms 18.1s
1000 2702 4331 2 27639 ms 27.6s
1000 2702 4331 6 15141 ms 15.1s
10000 24102 42403 1 300305ms 300.3s
10000 24102 42403 2 178598 ms 178.6s
10000 24102 42403 6 74216 ms 74.2s
100000 211593 435515 1 2919918ms 2919.9s
100000 211593 435515 2 1824366 ms 1824.4s
100000 211593 435515 6 621816 ms 621.8s
1000000 1942614 4404349 1 28753458 ms 28753.5s
1000000 1942614 4404349 2 17505452ms 17505.4s
1000000 1942614 4404349 6 6314416ms 6314.4s

Table 1: Results of Ingestion Engine Performance Testing
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4.3.2 Query Service Performance Testing

The query testing was done on each of the previously ingested graphs. There are two
major types of queries a user can run. There are queries that find a set of vertices, and there are
queries that find a set of vertices and traverse a certain number of edges out from that set to find
neighbors. We performed indexed and non-indexed tests for each of these, running the same 4
queries for all of the graphs. All of these results can be found in Table 2 below.

The results of this testing show the significant improvement that having properties
indexed provides compared to non-indexed properties. For all except the indexed vertex set
query, there is a trend of query times increasing as the cluster size increases. This was expected
due to hosting the cluster on a SAN. We do however see some strange variation for the indexed
vertex set queries. For the 2 node cluster the scaling advantage of the clustered indexing backend
did not provide enough of a performance increase to overcome the disk sharing issue. This
explains how the 1 node cluster can outperform the 2 node cluster due to its lack of disk sharing

issues, yet the 6 node cluster can still provide the best performance.
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# Total # Total# | # Nodes | Non-indexed | Indexed Non Indexed
Transactions | Vertices Edges in Vertex Set | Vertex Indexed | Traversal
Cluster | Query Time | Set Query | Traversal | Time (ms)
(ms) Time (ms) | Query
Time (ms)
1000 2702 4331 1 538 176 2355 603
1000 2702 4331 2 1307 183 7619 719
1000 2702 4331 6 3854 127 11795 736
10000 24102 42403 1 4421 197 54418 1995
10000 24102 42403 2 9798 216 81030 2554
10000 24102 42403 6 20759 143 128344 2864
100000 211593 435515 1 43372 483 114586 921
100000 211593 435515 2 118744 41 471346 127
100000 211593 435515 6 162925 39 480386 69
1000000 1942614 | 4404349 1 425277 803 848485 1642
1000000 1942614 | 4404349 2 1080917 1061 2072912 1976
1000000 1942614 | 4404349 6 1512667 59 2815516 266

Table 2 Results of Query Service Performance testing
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4.3.3 Visualization Service Performance Testing

Visualization testing is concerned only with the time it takes to display the graph once the

information has been received from the query service. The querying process from the Ul is

excluded because the queries have been evaluated separately, and the only additional factor is

network latency, which has minimal effect. Not surprisingly, the time to build the graph scales

significantly as the number of vertices and edges increases. Results can be found in Table 3.

Number of Vertices Number of Edges Time to Visualize (ms)
100 83 3623
500 488 16584
1000 1014 41932

Table 3 Results of Visualization Service Performance testing

4.4 Subject Expert Assessments

We spoke to ACI employees to get their inputs into how our system would be useful to

them. Our evaluation sessions were conducted at ACI using either video conferencing software

or at ACI in person. Each session was about an hour long and started off with a demonstration of

GraphView. Once we explained and demonstrated our system, we asked for their overall

opinions of the tool, how they thought it might be useful to them, and what features they would

like to see. These discussions provided important feedback on the usefulness of GraphView and

led to some novel ideas, some of which we were able to implement.

We first spoke with Cleber Martin who gave us the initial idea of creating synthetic

nodes. He also had us show how we can query by only transactions that are known to be
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fraudulent and also for transactions that are less than a certain value. Cleber said that being able
to immediately filter out non-fraudulent transactions would be helpful for identifying nodes
related to fraud.

We next spoke to Joe Lividini and Sanjay Dodhia who gave us the idea of being able to
‘bucket’ transaction nodes that may not be useful for analysis. This is explained later in the
Future Work section, but ‘bucketing” would be consolidating similar nodes into a singular node
in order to reduce the number of nodes on screen. They also asked whether the metadata we were
using was able to be modified in order to allow analysts to select the data they wanted to see, not
just the data that we had selected. We confirmed that the metadata can be changed to fit the
needs of analysts and they said this would be helpful. Modifiable metadata would allow analysts
to add and remove from the metadata that we have defined and also allow them to define
metadata for any features they may add.

Lastly we spoke to Thea Ghiselli-Crippa, Linda Mesinger Nunez and Andrew Morse,
who are all data scientists at ACI. They were interested in how we were computing our threat
indices and also had a few suggestions for future work. They liked how we compute the threat
index based on a node’s neighbors and thought that this would lead to an accurate calculation. A
suggestion they had was to include a weight for some of the nodes so when fraud indices are
being calculated, some nodes will affect the calculation more than others. The last suggestion
they had was to modify the width of edge levels in order to express more data, such as a number

of transactions from similar dimensions.

53



5. Conclusion
5.1 Project Summary

We accomplished the initial goals that we set for this project. Using big data analysis and
distributed computing systems, we created a distributed graph database to store financial
transactions. We also created the Ingestion Engine, Query Service, Metadata Manager, and
Visualization Service to help the analysts complete their tasks. All of these components come
together to form our solution, GraphView. With GraphView, analysts will have an easier time
finding trends and patterns in the data. Our system will potentially allow analysts to find new
patterns that they could not find using row-and-column based data. We introduced big data graph
technology to ACI Worldwide, which opens the possibility that it will continue to be used in
other projects in the future. While our system is a proof of concept, it acts as a stepping stone
that could lead to further innovations that revolutionize the way fraud is found in financial

transactions.

5.2 Teamwork

For the entirety of our project, we contacted our project advisor Eric Gieseke weekly. We
would usually meet onsite at ACI Worldwide but occasionally spoke and met using video
conferencing software. During these meetings, our team would present a powerpoint and
demonstration to Mr. Gieseke, our WPI advisor Professor Rundensteiner, and any other ACI
employees who were interested. We would discuss what we accomplished the previous week,
any roadblocks that we hit, and questions we had about going forward. We frequently

brainstormed when looking for solutions which is where concepts such as the Metadata Manager
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came from. As the project came to an end, we spoke to ACI employees in order for them to

critique GraphView and these discussions would occur in small scale focus groups.

5.3 Future Work

After the completion of our project there were a few areas of work that we thought could
be built upon. One area was adding more features to the visualization page. In our prototype the
graph can be visualized, dragged, and queried but there are other features that may be useful. The
ability to hide nodes and improving the formatting of query results are changes that could
provide additional functionality. Hiding nodes would allow analysts to ignore some of the nodes
and be able to focus on those that they most care about. Along with hiding nodes, the idea of
‘bucketing’ similar nodes would also allow the graph to be slimmed down and present the
analyst with only the nodes they wanted to see. This would enable analysts to compress a group
of uninteresting similar nodes into a single, visual node.

While we implemented a table to show query results, the display of the table could be
modified so the results can be seen more clearly. This would utilize a sorting function to allow
the user to sort by properties. While we are able to query some of the graph properties with any
predicate operator, other properties, like date and time, currently only allow equality predicates.
An analyst cannot find transactions within a desired range, they can only search for transactions
on the exact time or date. Extending the functionality to enable analysts to specify a range of
time would allow them to more easily focus on the most relevant transactions.

Next, display times could be designed to show how transactions occurred over time. This

could be implemented by either making the transactions that occurred earliest smaller and then
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increase in size as they became closer to the future, or by using a different physics engine that
allows for some arranging by transaction properties, or by using line thickness to denote relative
time between transactions. In our current prototype, we similarly modified the nodes based on
the fraud index, but modifying the nodes’ visual properties based on time would require some
way relating the date and time properties, as mentioned above.

Our graph currently only contains transaction data, but in the future it could be expanded
to include data taken from social media or geographical location. Using social media data, such
as Facebook friends, could allow more relationships to be formed. This would possibly allow
fraud to be more easily detected in the graph. Geographic data from the transaction data could be
used to overlay the data on a map. This would allow analysts to more easily visualize where
different transactions occurred. This could allow for more insight into whether or not a
transaction is fraudulent. For example, if a card was used in one part of the United States and
then used on the other side of the country, this card would most likely be compromised.

Another concept that could be expanded upon would be the synthetic nodes. We showed
that we could make synthetic nodes out of multiple properties, but, as of now, they can only be
created by an administrator, someone with direct access to the Titan database. Future projects
could focus on extending this functionality to the fraud analyst through the graphical interface.
This way they would not have to know how to program or modify the system, they could easily
create synthetic nodes based on the specific properties they want to better examine.

The last recommendation for future work on this project would be to update the
technologies that are involved in the pipeline. One example of this would be our implementation

uses Titan 0.5.4. During the lifespan of our project, Titan 1.0 was released, but we did not update
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our system to this latest version. In the future, all technologies could be updated to their latest

versions to ensure that the system is secure and will run optimally.
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APPENDIX A: Evaluation Results

# Total # Total # # Nodes in Time to Time to
Transactions Vertices Edges Cluster ingest (ms) ingest (s)
1000 2702 4331 1 18152 ms 18.1s
1000 2702 4331 2 27639 ms 27.6s
1000 2702 4331 6 15141 ms 15.1s
10000 24102 42403 1 300305ms 300.3s
10000 24102 42403 2 178598 ms 178.6s
10000 24102 42403 6 74216 ms 74.2s
100000 211593 435515 1 2919918ms 2919.9s
100000 211593 435515 2 1824366 ms 1824.4s
100000 211593 435515 6 621816 ms 621.8s
1000000 1942614 4404349 1 28753458 ms 28753.5s
1000000 1942614 4404349 2 17505452ms 17505.4s
1000000 1942614 4404349 6 6314416ms 6314.4s

Table 1: Results of Ingestion Engine Performance Testing
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# Total # Total# | # Nodes | Non-indexed | Indexed Non Indexed
Transactions | Vertices Edges in Vertex Set | Vertex Indexed | Traversal
Cluster | Query Time | Set Query | Traversal | Time (ms)
(ms) Time (ms) | Query
Time (ms)
1000 2702 4331 1 538 176 2355 603
1000 2702 4331 2 1307 183 7619 719
1000 2702 4331 6 3854 127 11795 736
10000 24102 42403 1 4421 197 54418 1995
10000 24102 42403 2 9798 216 81030 2554
10000 24102 42403 6 20759 143 128344 2864
100000 211593 435515 1 43372 483 114586 921
100000 211593 435515 2 118744 41 471346 127
100000 211593 435515 6 162925 39 480386 69
1000000 1942614 | 4404349 1 425277 803 848485 1642
1000000 1942614 | 4404349 2 1080917 1061 2072912 1976
1000000 1942614 | 4404349 6 1512667 59 2815516 266

Table 2 Results of Query Service Performance testing
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Number of Vertices Number of Edges Time to Visualize (ms)
100 83 3623
500 488 16584
1000 1014 41932

Table 3 Results of Visualization Service Performance testing
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APPENDIX B: Tool Configurations

cluster name: 'Titan Cassandra Clusterl’
num tokens: 256
hinted handoff enabled: true
max hint window in ms: 10800000 # 3 hours
hinted handoff throttle in kb: 1024
max hints delivery threads: 2
batchlog replay throttle in kb: 1024
authenticator: AllowAllAuthenticataor
authorizer: AllowAllAuthorizer
permizsions validity in ms: 2000
partitioner: org.apache.cassandra.dht.Murmur3iPartitioner
data file directories:

- db/cas=sandra/sdata
commitlog directory: db/cassandra/commitlog
dizk failure policy: =top
commit failure policy: stop
key cache size in mb:
key cache save period: 14400
row_cache size in mb: 0
row_cache save period: 0O

commitlog segment size in mb: 32
seed provider:
- class name: org.apache.cassgandra.locator.SimpleSeedProvider
parameters:

$ 3eeds iz actually a comma-delimited list of addresszes.

# Ex: "<ipl>»,<ip2>,<ip3>"

—-aoadg: 10, 5,35, 43
concurrent reads: 3
CONCUrrent Writes:
memtable flush gueue size: 256
trickle faync: false
trickle faync interval in kb: 10240
storage port: 7000
28l storage port: TOO
lizten address: 10.5
start native transport: true
native transport port: 50432
start_rpc: true
rpc_address: 10.5.25,143
rpc_port: 9160

2
32

Figure 1. Cassandra Configuration Part 1. (continued in next figure)
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rpc_keepalive: true

IpC Server type: Sync

thrift framed transport size in mb: 15
incremental backups: false
snapshot before compaction: false
auto snapshot: true
tombstone warn threshold: 1000
tombstone failure threshold: 100000
column index size in kb: &4

in memory compaction limit in mb: &4
multithreaded compaction: false
compaction throughput mb per sec: 16
compaction preheat key cache: true
read request_timeout in ms: 5000

range request timeout_in ms: 10000
Write request timeout in ms: 2000
cas_contention timeout in ms: 1000
truncate_ request timeout in ms: 60000

request_timeout_in ms: 10000
cross_node timeout: false
endpoint snitch: SimpleSnitch
dynamic snitch update_ interval in ms: 1
dynamic snitch reset interval in ms: &0
dynamic snitch badness_ threshold: 0.1
request_scheduler: org.apache.cassandra.scheduler.NoScheduler
server_ encryption options:

internode encryption: none

keystore: conf/.keystor

keystore

Lo

it
m

[ L

truststore password: cassandra
client encryption options:
enabled: false
keyvstore: conf/

Figure 2 Cassandra Configuration Part 2

cluster.name: escluaterl
network . host: 10.5.25.14:
discovery.zen.ping.unicast. hogts: 10.5.25.14:

Figure 3 Elasticsearch Node Configuration.
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storage.backend = cassandra

storage.hostname = 10.5.25.143

storage.batch-loading = true

achema.defaultrnone

cache.dbk-cache = true

cache.dbk-cache-clean-wait = 50

cache.dbk-cache-tims = 10000

cache.dbk-cache-3ize = 0.25
storage.index.search.backend = elasticaearch
storage.index.search.hoatname = 10.5.25.143
storage.index.search.cluster-name=eacluaterl
storage.index.search.port = 9200
storage.index.search.elasticsearch.client-only = false
storage.index.search.elasticaearch.local -mode = true
jtorage.index.search.directory = index storage
storage.index.search.client-sniff = false
gcript.disable dynamic = false

force-index = false

Figure 4 Titan Graph Configuration

# input graph parameters

titan.hadoop.input. format=com. thinkaurelius.titan.hadoop.formats.cassandra.TitanCassandralnputFormat

titan.hadoop.input.conf.storage .backend=cassandra
titan.hadoop.input.conf.storage.hostname=10.5.25.143
titan.hadoop.input.conf.storage.port=9160
cassandra.input.partiticner.class=org.apache.cassandra.dht.Murmir3Partitioner

# output data {(graph or atatistic) parameters
titan.hadoop.sideeffect. format=org.apache .hadoop.mapreduce. lib.output. TextOutputFormat
titan.hadoop.output. format=com. thinkaurelius.titan.hadoop. formats.graphson.GraphS0NOutputFormat

Figure S Titan-Hadoop Graph Configuration
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£2xml wversion="1.0" encoding="UTF-8"2>
<rexster>
<http>
<gerver-port>8182</3erver-port>
<gerver-host>0.0.0.0</3erver-hoat>
<base-urirhttp: /flocalhost< /base-uri>
<web-root>public</web-root>
<character-aet>UTF-8</character-set>
<enable-jmx>false</enable-jmx>
<enable-doghousertrue<,/enable-doghouse>
<Max-po3t-3izex>2097152</max-post-3ize>
<max-header-size>8192</max-header-size>
<upload-timecut-millis>30000< / upload-timecut-millis>
<thread-pool>
<worker>
<core—3izex8</core-size>
<max-3izex>8</max-gize>
</worker>
<kernal>
<core—3izexd4</core-size>
<max-3izexd</max-3ize>
</kernal>
</thread-pool>
<io-strategy>leader-follower</ic—-strategy>
</http>
<Irexpro>
<gerver-port>8184</3erver-port>
<gerver-host>0.0.0.0</3erver-hoat>
<ge33ion-max-idle>1790000</ se33icn-max-idle>
<gession—-check-interval>3000000«</3ession—check-interval>
<connection-max-idle>180000</connection-max-idlex>
<connection-check-interval>3000000</connection—-check-interval>
<read-buffer>65536</ read-buffer>
<enable-jmx>false</enable-jmx>
<thread-pool>
<worker>
<core—3izex8</core-size>
<max-3izex>8</max-gize>
</worker>
<kernal>
<core—3izexd4</core-size>
<max-3izexd</max-gize>
</kernal>
</thread-pool>
<io-strategy>leader-follower</ic—-strategy>
</ reRprox
<shutdown-port>8183</shutdown-port>
<shutdown-host>»127.0.0.1</shutdown-host>
<config-check-interval »10000</config-check-interval>

Figure 6 Rexster Configuration Part 1
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<3cript-engines>
<script-enginel

<name>gremlin-groovy</name>
<reset-threshold>500</reset-threshold>
«importsrcom.tinkerpop.gremlin. * com.tinkerpop.gremlin.java.*,com.tinkerpop.gremlin.pipes.filter.*, com.tinkerpop.gremlin.pipes.sideeffect.*,
com.tinkerpop.gremlin.pipes.transform. *, com. tinkerpop.blueprints.*, com. tinkerpop.blueprints. impls. *
com. tinkerpop.blueprints.impls.tg.*, com.tinkerpop.blueprints.impls.neodj.*,com. tinkerpop.blueprints.impls.neodj.batch.*,
com. tinkerpop.blueprints.impls.nec4j2.*, con. tinkerpop.blueprints.impls.nec4j2.batch. *,
com. tinkerpop.blueprints.impls.orient. *, com. tinkerpop.blueprints.impls.orient .batch. *  com. tinkerpop.blueprints.impls.dex. ¥,
com. tinkerpop.blueprints.impls.rexster.* com.tinkerpop.blueprints.impls.sail.*,com.tinkerpop.blueprints.impls.sail.impls.*,
com.tinkerpop.blueprints.util.*,com.tinkerpop.blueprints.util.jio.*,com. tinkerpop.blueprints.util.ic.gml.*,
com.tinkerpop.blueprints.util.io.graphml.*,comn.tinkerpop.blueprints.util.io.graphson.*, com.tinkerpop.blueprints.util.wrappers.*,
com. tinkerpop.blueprints.util.wrappers.batch.*,com. tinkerpop.blueprints.util.wrappers.batch.cache.*,
com. tinkerpop.blueprints.util.wrappers.event.*,com. tinkerpop.blueprints.util.wrappers.event.listener.*,
com. tinkerpop.blueprints.util.wrappers.id. * com.tinkerpop.blueprints.util.wrappers.partition.*,
com. tinkerpop.blueprints.util.wrappers.readonly.*,com.tinkerpop.blueprints.oupls.sail.*, com. tinkerpop.blueprints.oupls.sail.pg.*,
com. tinkerpop.blueprints.oupls. jung.* com. tinkerpop.pipes.*,
com. tinkerpop.pipes.branch.* ,com.tinkerpop.pipes.filter.*, com. tinkerpop.pipes.sideeffect. *, com. tinkerpop.pipes. transform. *,
com.tinkerpop.pipes.util.* com.tinkerpop.pipes.util.iterators.*, com.tinkerpop.pipes.util.structures.x,

org.apache .commons .configuration.*,com. thinkaurelius.titan.core.* com.thinkaurelius.titan.core.attribute.* com.thinkaurelius.titan.core.log.*,
com. thinkaurelius.titan.core.olap.*,com.thinkaurelius.titan.core.schema.*,com.thinkaurelius.titan.core.util. *, com.thinkaurelius.titan.example.*,

org.apache.commons .configuration.*, com. tinkerpop.gremlin. Tokens.T,com. tinkerpop.gremlin. groovy . *</imporca>

<static-imports>com. tinkerpop.blueprints.Direction.*,com.tinkerpop.blueprints. TransactionalGraphiConclusion. *,con. tinkerpop.blueprints.Compare. &,

com.thinkaurelius.titan.core.attribute.Geo.* , com.thinkaurelius.titan.core.attribute.Text.*,

com. thinkaurelius,titan.core.Cardinality.* com.thinkaurelius.titan.core.Multiplicity.*,com, tinkerpop.blueprints.Query$Compare. *</atatic-imporcas

<facript-engine>
</script-engines>
«gecuricy>
<authenticaticn>
<typernone</typer
«configuration>
<users>
<user>
<username>rexster</usernamex
<pasawerd>rexster</password>
</user>
</userax
</configuration>
<fauthentication>
</3security>
<metrics>
<reporter>
<type>imx</typesr
</reporter>
<reporter>
<typerhttp</type>
</reporter>
<reporter>

Figure 6 Rexster Configuration Part 2
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<reporter>
<typerconsole</type>
<propertieax
<rates-time-unit>SECONDS</rates-time-unit:
<duration-time-unit>SECONDS</duraticn-time-unit>
<report-period>10</report-pericd:>
<report-time-unit>MINUTES</report-time—unit>
<includea>http.rest.*</includes>
<excludes>htip.rest.*.delete</excludes>
</properties
</reporter>
</metrica>
<grapha
<graph>
<graph-name>graph</graph-name>
<graph-type>com.thinkaurelius.titan.tinkerpop.rexster.TitanGraphConfiguration</graph-type>
<graph-read-cnly>false</graph-read-only>
<propertiea>
<storage.backend>» cassandra</storage.backend>
<storage.hostname> 10.5.25.143</storage.hostname>
<gtorage.batch-leading> true</storage.batch-loading>
<gchema.default>none</schema.default>
<cache.db-cache>true</cache.db-cache>
<cache.db-cache-clean-wait>50</cache.db-cache-clean-wait>
<cache.db-cache-time>10000</cache.db-cache-time>
<cache.db-cache-3ize>0.25</cache.db-cache-3ize>
<storage.index.search.backend>elasticsearch</storage.index.search.backend>
<storage.index.search.hoatname»10.5.25.143</storage. index. search.hostname>
<gtorage.index.search.cluster-name>esclusterl«</storage.index.search.cluster-name>
<gtorage.index.search.port>9%200</storage.index. search.port>
<storage.index.search.elasticaearch.client-only>false</storage.index.search.elasticsearch.client-only>
<storage.index.search.elasticaearch.local -mode>true</storage.index.search.elaaticsearch. local -mode
<atorage.index.search.directory>index storage</stcrage.index.aearch.directory>
«<gtorage.index.search.client-sniff>false</storage.index.aearch.client-aniff>
<3cript.disable dynamicrfalse</acript.disable dynamic>
<force-index>false</force-index>
</properties
<extensions>
<allows>
<allow>tp:gremlin</allows>
</allows>
</extensions>
</graph>
<fgrapha>
</rexster>

Figure 7 Rexster Configuration Part 3
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APPENDIX C: Metadata Information

Field Name Dimension Description
Type
CARDBIN Account The Bank Identification Number of the card
used
CARDTYPE Account The card type
CARDEXPDT Account The card’s expiration date
BILLZIPCD Account Billing zip code of the account holder
BILLSTATE Account Billing state of the account holder
BILLCITY Account Billing city of the account holder
CUSTFIRSTNAME Account Customer’s first name
CUSTLASTNAME Account Customer’s last name
WEBSITE Website Website address where the transaction was
made
MERCHANTID Merchant ID of the merchant
MCC_CODE Merchant Merchant category code
MERCHANT ZIP Merchant Zip code of the merchant
TRX ID Transaction ID of the transaction
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TRANSACTION _AMOUNT | Transaction Cost of the transaction

PURCHASE DATE Transaction Date the transaction was made

PRCHSTM Transaction Time the transaction was made

FRAUD_ IDX Transaction Character specifying if the transaction was
fraudulent or not (G for good, B for bad)

CUSTIP Transaction IP Address used to make the transaction

Table 1. Metadata fields from the labeled shield data used during evaluation
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