

Virginia Printing
A searchable extensible online database of Virginia printing records

Project Team:

Leo Bowen-Biggs pcbiggs@wpi.edu

Courtney Davis cedavis@wpi.edu

Project Advisors:
Professor Wilson Wong

Our team would like to give a special thanks to Dr. David Rawson for providing the foundational

research for this project and fundamental guidance throughout the design process. By reaching

out to us with his research he has made this project possible.

This report represents the work of WPI undergraduate students submitted to the faculty as

evidence of completion of a degree requirement. WPI routinely publishes these reports on its

website without editorial or peer review. For more information about the projects program at

WPI, please see http://wp.wpi.edu/projectbasedlearning/proven-pedagogy/project-based-

learning-at-wpi

i

Abstract

Maintaining a record of historical documents is critical to an accurate understanding of

the present and the historical patterns that have led up to modern societal norms. The early

Virginia printing trade is a critical part of the overall history of printing, and accurate historical

representation of the trade is important for analyzing historical patterns. By analyzing these

patterns, we can trace the progression from early printing to more modern printing practices, and

eventually to the digital age of publishing. For this project our goal was to create a user-friendly

website application with a database backend that will safely store and clearly present data

relating to the Virginia printing trade before the 1820s. Our online application is intended for use

by students, researchers, and any individual in the general public with an interest in the history of

printing in Virginia from prior to 1820. The website application is intended to be maintained by

historical researchers who will be able to continuously update and refine the database as new

information on Virginia printing is uncovered. While our project goal was to create a website for

the imprints, newspapers, and biographies we currently have on the Virginia printing trade

before the 1820s, we hope that our design will allow for continual expansion of the data in the

future.

ii

Table of Contents

Abstract i

Table of Contents ii

Table of Figures v

Table of Tables ix

1. Introduction 1

2. Research 3

2.1 Index of Virginia Printing 3

2.1.1 Background 3

2.1.2 Previous Research Analysis 3

2.2 Historical Database Website Designs 4

2.2.1 Encyclopedia Virginia 5

2.2.2 Virginia Historical Society 6

2.2.3 Library of Congress Chronicling America 7

3. Software Development Methodology 8

3.1 Waterfall Software Development Paradigm 9

3.1.1 Advantages and Disadvantages of Waterfall 11

3.2 Agile Manifesto 12

3.3 Scrum 13

3.3.1 The Steps of Scrum 14

3.3.2 Advantages and Disadvantages of Scrum 15

3.3.3 Our Team’s Scrum Implementation 16

4. Software Development Environment 17

4.1 Research 17

4.1.1 Communication 17

4.1.2 Repositories 17

4.1.3 IDEs 18

4.1.4 Server 19

4.1.5 Framework 21

4.1.6 Database 22

iii

4.2 Chosen Technical Framework 23

4.3 Architecture Implementation 24

5. Software Requirements 27

5.1 Functional and Nonfunctional Requirements 27

5.1.1 Nonfunctional Requirements 27

5.1.2 Functional Requirements 28

5.2 Initial Epics and User Stories 30

5.3 Initial Use Cases 34

6. Design 45

6.1 Preliminary Design 45

6.2 Initial Architectural Design 45

6.2.1 Initial Class Diagram 46

6.2.2 Initial Entity Relationship Diagram 48

6.3 Final Design and Notable Changes 49

6.3.1 Class Diagram 50

7. Implementation 52

7.1 Original Expected Project Timeline 52

7.2 Sprint 0 53

7.3 Sprint 1 54

7.4 Sprint 2 56

7.5 Sprint 3 58

7.6 Sprint 4 60

7.7 Sprint 5 61

8. Testing 65

9. Assessment 66

10. Future Work 67

11. Conclusion 68

12. References 69

Appendix 1 71

Appendix 2 79

Appendix 3 81

iv

Appendix 4 82

Appendix 5 83

Appendix 6 98

v

Table of Figures

Figure 1 - Waterfall Software Development Paradigm Steps (Price, 1999) 10

Figure 2 - SCRUM Software Development Paradigm Steps (Hughey, 2009) 14

Figure 3 - Software Architecture 24

Figure 4 - Django Architecture 26

Figure 5 - Use Case Diagram 44

Figure 6 - Initial Class Diagram 46

Figure 7 - Entity Relationship Diagram 48

Figure 8 - Final Class Diagram 50

Figure 9 - The Minimal Index page displaying links to the four test objects (Sprint 0) 54

Figure 10 - Sprint 0 Burndown Chart 54

Figure 11 - Detailed biography page for Adams, showing all basic data (Sprint 1) 56

Figure 12 - Sprint 1 Burndown Chart 56

Figure 13 - The admin interface for editing a Biography (Sprint 2) 57

Figure 14 - Chronology page displaying imprint records (Sprint 2) 58

Figure 15 - Sprint 2 Burndown Chart 58

Figure 16 - A portion of the detailed biography page showing page links (Sprint 3) 59

Figure 17 - Sprint 3 Burndown Chart 60

Figure 18 - Individual biography page for Adams, displaying all data (Sprint 4) 61

Figure 19 - Sprint 4 Burndown Chart 61

Figure 20 - The index page after the 5th Sprint 64

Figure 21 - The results displayed, next to “Refine Search” form (5th Sprint) 64

Figure 22 - Sprint 5 Burndown Chart 65

vi

Figure 23 - The homepage of the Index of Virginia Printing 83

Figure 24 - Imprint “Typographia: An ode, on printing” available on the Index 84

Figure 25 - Browse imprint records by the year they were published 85

Figure 26 - Excerpt from the page for William Parks showing some of his associations 86

Figure 27 - The search box available on the Index Page 86

Figure 28 - The location of the magnifying glass in the webpage header. 87

Figure 29 - The default search results for “Adams”. 88

Figure 30 - Limiting the search for biographies who have a function listed as “editor”. 89

Figure 31 - The login page for the administrator website 90

Figure 32 - The landing page for the administrator website 91

Figure 33 - Add a Biography by clicking the “Add” button in that row 92

Figure 34 - A blank biography record allows the trusted historian to add new records. 93

Figure 35 - An error occurred trying to save this record because the ID is already in use 93

Figure 36 - The list of biographies in the database. Select one to edit. 94

Figure 37 - The form populates with the record's data and may be changed graphically 95

Figure 38 - Select multiple records to delete and choose “Delete” in the dropdown menu 96

Figure 39 - The “Recent Actions” list shows records have been added, edited, and deleted. 97

Figure 40 - Download the application code as a ZIP file from GitHub. 99

Figure 41 - Click 'cPanel' on the Client Area toolbar 100

Figure 42 - Click 'File Manager' in the cPanel toolbar. 100

Figure 43 - Select 'Upload' in the File Manager. 100

Figure 44 - The ZIP file containing the code has successfully uploaded 101

vii

Figure 45 - With the ZIP file selected, click “Extract” from the File Manager Toolbar 101

Figure 46 - In the “Extract” dialog, leave the 'path you with to extract the files to' blank 102

Figure 47 - Application code is available on the system 102

Figure 48 - In the initial “SSH Access” screen, click “Manage SSH Keys”. 103

Figure 49 - Under the “Manage SSH Keys” heading, click “Generate a New Key”. 103

Figure 50 - Create a strong password for the key 104

Figure 51 - The successful creation of the key 104

Figure 52 - Click “Manage” to authorize the SSH key that was created 105

Figure 53 - Click “Authorize” to authorize the SSH key for access to the account. 105

Figure 54 - Under “Databases”, select “MySQL® Databases”. 106

Figure 55 - Create a Database by giving it a name 107

Figure 56 - Create a new MySQL User with a name and strong password 107

Figure 57 - Add the user to the database that was created by selecting them from the menus 108

Figure 58 - Give the MySQL user all permissions on the database 108

Figure 59 - In MySQL Workbench, Connect to a Database 109

Figure 60 - The “Connect to Database” dialog. Fill out Hostname and Username 110

Figure 61 - Error message revealing the domain name of the local machine. 111

Figure 62 - Under the “Databases” heading, select “Remote MySQL®”. 111

Figure 63 - Add the client computer's domain name to allow it to connect to the database 112

Figure 64 - Successful connection between the client and the MySQL database 112

Figure 65 - “Select Python App” under 'Software'. 113

Figure 66 - “Setup new application” settings for the Index 113

Figure 67 - Settings for the new application under “existing applications”. 114

viii

Figure 68 - Edit the WGI file location in the application settings 114

Figure 69 - Completed application settings for the Index. 115

Figure 70 - Select “Edit” to update the settings for production 116

Figure 71 - Change the Debug settings through the text editor on the server 116

Figure 72 - Create a subdomain through cPanel 117

Figure 73 - Name the subdomain 'static' and use the default document root. 117

Figure 74 - Run the ‘collectstatic’ command from the python application settings page 118

Figure 75 - Verify the collectstatic command ran properly 119

Figure 76 - Run the migrate command to configure the database tables 119

Figure 77 - The tables created by Django for the application in MySQL Workbench 120

Figure 78 - Creating a superuser on the command line 121

Figure 79 - Administrator login page 121

ix

Table of Tables

Table 1 - Excerpt from Imprint Dataset A-G 79

Table 2 - Excerpt from Imprint Dataset H-Q 80

Table 3 - Excerpt from Journals Dataset A-G 81

Table 4 - Excerpt from People Dataset A-F 82

1

1. Introduction

 Printing, in various forms, has been utilized for centuries to communicate ideas and

preserve important records. In the past, records have been kept of these printed documents in

hard copy formats, but recent efforts are being made to transfer these records from their hard

copy formats into searchable online databases. The benefits of online databases of these records

include being able to continuously keep up to date with new uncovered records and being able to

access a multitude of records all in one convenient place. The records of the Virginia printing

trade are important to gain an accurate overall view of the printing trade itself and our

application will provide a location for the records to be curated. By providing a user-friendly

website where the public can search through Virginia printing records, and where historians can

contribute to the records, we wanted to ensure that there was a convenient and up to date online

record of printing in Virginia before the 1820s. Our website utilizes a database of biographies,

imprint records, newspaper lineages, and individual newspapers, all relating to printing in

Virginia before the 1820s, and transforms those records into a searchable website that is easily

accessible to the public.

 By analyzing the data previously collected on the pre-1820s Virginia printing trade by

Dr. David A. Rawson, and looking to previous historical themed sites that utilize database

backends for inspiration, our team chose to follow a more relational site layout, with each data

entry having connections to other data entries via page links. To create this type of website our

team will follow the agile Scrum methodology, while utilizing a software stack framework

consisting of MySQL, Django, and Reclaim Hosting web services. Throughout this paper we

2

will outline and explain, in detail, how we utilized our research and design methodology to build

a historical database backed website that meets our outlined project goals and requirements.

3

2. Research

2.1 Index of Virginia Printing

2.1.1 Background

This project was built upon the research into the pre-1820s Virginia printing trade

conducted by Dr. David A. Rawson, a bibliographer and former Worcester Polytechnic Institute

history professor. The beginning stages of this project required study into the previous work of

the project owner, Dr. Rawson, so that we could gain an understanding of the origin and

expected goals of the project. Utilizing a written thesis and project proposal by Dr. Rawson, we

were able to gain a full understanding of what was expected from us by the completion of our

project, to create “a fully searchable online database….that can be readily updated as new

evidence surfaces….[that follows the underlying principle of] ‘upgradeability without

reconstruction’....[in order to shed light on] information that both extended the work of earlier

scholars and uncovered forgotten people and imprints [relating to the print trade in Virginia pre-

1820s]” (Rawson, 2016). With these goals in mind our team began breaking down the dataset of

the project in order to design a well-fitting website that fulfills all the goals outlined by our

project owner, but also stuck to the idea that we need to create an online user-friendly site with a

well-structured database backend, in order to convey the important information relevant to the

pre-1820s Virginia printing trade.

2.1.2 Previous Research Analysis

At the start of our project, our team was provided with research previously done by Dr.

Rawson in the form of .pdf documents and Excel spreadsheets that pull the relevant information

4

from those documents (for examples of the spreadsheets we were provided see Appendices 2, 3,

and 4). The research Dr. Rawson conducted resulted in the creation of three tables of data

relating to the pre-1820s Virginia printing trade: imprint records, people, and journals. Each table

has its own set of fields, which are explained at the end of this report (see Appendix 1). The

imprint record database table contains data relating to the imprints published between 1730 and

1820, an imprint is a record created by bibliographers and cataloguers that is generated by

physical examination of a printed object (Rawson, 2016). The people database table contains

short backgrounds on the various individuals involved in the Virginia print trade from 1683

through 1820. Finally, the journal database table contains a history of the newspapers that were

being printed in Virginia by the end of 1820, this history includes any title changes the

newspaper underwent as well as the location it was printed in and who was involved in the

printing. With all the provided datasets in mind our team began to research how other database

backed sites linked together various records and what methods would work for our relational

dataset.

2.2 Historical Database Website Designs

Efforts to centralize catalogs of historical data for online access have been successfully

implemented by many other historical organizations. To gain an understanding of what our

application should provide, we surveyed some of these other implementations. We specifically

looked at the way they handled related data, what options were available for searching and

browsing, and if they provided data related to our application. Our initial review was from a

user's perspective, but we also considered how these patterns could be implemented. Overall, at

the end of our research into these other sites we decided we wanted a more relational

5

presentation of the data, like the ‘Chronicling America’ site we explain below, to create a

connective and interactive site.

2.2.1 Encyclopedia Virginia

Encyclopedia Virginia is a project by the Virginia Foundation for the Humanities and

Library of Virginia. Its primary content is articles relating to a broad range of topics in Virginia

History. Almost everything is an article, and there is no distinction between the type of the

article's subject. For example, an article on a person and a newspaper differ only in their content,

not structure or layout. They also host primary documents, which have external links to the

provider of the document. These also list the articles which reference the document.

The articles have inline hyperlinks to related content. This provides an immediate access

to the information but does not reveal relationships between articles in a systematic way. For

example, compiling a list of people associated with a newspaper would require reading the

article and finding references to those people. However, inline links provide an implicit

explanation of the relationship. In the above example, reading the article provides information on

how or why those people are associated with the newspaper. Certain Links within the article are

highlighted on the margin. These seem to primarily point to special features (such as a “virtual

tour”), or primary documents.

The website's header contains a search box. There are no immediate options available, so

the search defaults to a keyword search of articles. On the results page, visitors are given the

option to narrow their choice by Resource Type, Source, Medium, or Category. Alternatively, a

user can browse for articles. An index provides a list of pages from A-Z, and a map provides the

location of certain articles (with filters for Category and Year, and an optional search term). The

6

encyclopedia aims to provide many points of entry for the data by including “rich metadata

associated with each entry”.

Each article page begins with a summary. Some pages have a table of contents. There are

buttons, so the visitor can share the article on social media such as Facebook or Twitter. Articles

also have a timeline, list of categories, list of further reading, a pre-formatted citation to use

when referencing the article, a publication and modification date, and contribution credits.

Additionally, each page ends in a “Give Feedback” form.

Because each page has its own URL, they can be linked to and shared externally.

Encyclopedia Virginia certainly endorses other sites linking to it, but the content on the site

cannot be used elsewhere as it is under copyright. Their Primary Documents have links to the

owner of the document, for example the Library of Virginia (Virginia Foundation for the

Humanities, 2017).

2.2.2 Virginia Historical Society

The Virginia Historical Society provides search access to their catalog of many primary

documents. The results contain physical documents as well but may be limited to exclude items

not available online. Advanced Search provides more filters to narrow down the search based on

Keyword, Titles, Personal/Corporate Authors, Subjects, Publication Date Range, Format, or

collection. However, there is no URL pattern defined so one cannot link to the results of a

search. Additionally, individual records returned from a search do not have URLs either, so they

cannot easily be shared or saved. Each item does have a reference number, but there is no way to

call up an item based on the reference number.

The Virginia Historical Society owns the rights to the material in their collection and

charges for its use. There are further restrictions on images used online, as they must “be no

7

larger than 72 dpi and 600 x 400 pixels”. Certain academic projects may be able to waive the fee,

but they do not make finding and saving references to documents easy (Virginia Historical

Society, 2017).

2.2.3 Library of Congress Chronicling America

Chronicling America is a collection of historical newspapers maintained by the Library of

Congress built with sustainability in mind. The newspaper pages themselves are zoomable high-

resolution scans. They also provide PDF and OCR versions. These pages link to more

information about the newspaper it is from. Information about Newspapers include a standard set

of metadata, much of which overlaps with the data fields required by professor Rawson.

Their Search functionality is implemented through patterns in the URL, so links to search results

may be shared. Additionally, each entry on a newspaper and scan of a newspaper page has a

static URL to which they explicitly provide stable access. The newspapers themselves are all in

the public domain, and the scanned images and webpages are provided in the public domain as

well. As part of their commitment to the sustainability of the project, the source code for the

website is also public domain.

Chronicling America has two types of data: Newspaper page scans and Newspaper

information. They link to related information in limited and standardized ways. All newspaper

page scans link to an information page on the newspaper that published it. Newspapers that are

part of a lineage have preceding and/or succeeding titles linked. Any other relationships are

simply collected under a “Related Links” list (Chronicling America, 2017).

8

3. Software Development Methodology

 Before breaking down our software development methodology choices it is critical to

explain key features and tools of software development. This section will help bring anyone up

to speed who does not have experience with software development and may be unfamiliar with

the various terms we will be using throughout the report.

 For starters, what is a software development methodology, and what is it used for?

Software methodologies are “frameworks used to structure, plan, and control the process of

developing an information system [or other application]” (IT Knowledge portal, 2017).

Methodologies are essentially the recipes for the application design that software engineers

follow to ensure a successful application development. Many development methodologies utilize

the same tools to accomplish setting design frameworks up. For example, both the traditional

Waterfall and agile Scrum models mentioned earlier can employ use cases and user stories to

convey project requirements. Use cases are descriptions of the interactions between a user and

the software, while user stories are descriptions of specific needs that users have. User stories are

written with the users as the audience while use cases are written using more technical language

(Stellman, 2009). With the use of tools like these, frameworks can help guide software designers

in the right direction of creating more user-friendly applications.

 Another key concept that will be used throughout this paper is the concept of a database.

While this term is probably widely known there are features that accompany database design,

that we will be utilizing, that are important to explain. A database is, to put it simply, a

“collection of information that can easily be managed and updated”. The data within a database

is organized into rows, columns, and tables (Rouse, 2017). To display the information held in the

various tables in an easy to understand way, often software developers use Entity Relationship

9

Diagrams. Simply put, these are diagrams that show the various relationships between database

tables and what attributes each of the tables possess.

 Finally, some other important terms to note are software architecture, software

frameworks, and class diagrams. Software architecture is the blueprint for the application, and

how all the elements that comprise an application fit together. Software frameworks are “a

concrete or conceptual platform where common code with generic functionality can be

selectively specialized or overridden by developers or users. Frameworks take the form of

libraries, where a well-defined application program interface (API) is reusable anywhere within

the software under development” (Techopedia, 2017). A class diagram is a software developer

tool to show the application's classes, as well as their methods and attributes, in a convenient

diagram. Class diagrams are often more technical and used for explaining coding structure.

Throughout our report there will be examples of all the tools listed here that we utilized in the

creation of our application.

3.1 Waterfall Software Development Paradigm

 The traditional approach to software design is the Waterfall approach. The approach is

very linear and implies a downward forward motion at each step, like a waterfall falling over a

cliff (Hughey, 2009). In Figure 1 there are five steps outlined, the exact number of steps can vary

depending on the source, but the overall idea of each phase is the same throughout sources, some

just combine or break up steps for clarification and simplification.

10

Figure 1: Waterfall Software Development Paradigm Steps (Price, 1999)

Respectively, each phase has its own steps that must be completed before a team can

move on to the next one in the process. The Requirements phase is where the brainstorming of

the entire project takes place. This phase is also sometimes broken up into two steps, Analysis

and then Requirements, or simply combined and listed as Requirements Analysis. We chose to

take the second approach in our design process, so all the requirements are outlined, and

analyzed, with users during this phase. There is a large amount of time spent making sure every

needed requirement is discussed and articulated and that the goals of the teams and project are all

well defined by the end of this stage (Hughey, 2009). This stage requires a lot of forethought

about the end goals of the project so that important requirements of the application are not

overlooked. By the end of this phase, all the things an application can do should be well defined.

 The design phase is first done independently of hardware or software systems. Teams

take information gathered in the Requirements phase to create an abstract design of the

application. The abstract design is then transformed into a concrete design that takes into

11

consideration the specific software and hardware requirements of the application (Hughey,

2009).

Finally, the Implementation, Verification, and Testing phases are where the application

comes to life. In the Implementation phase, all the code is written, and programmers will take the

requirements, specifications, and design and create a functional application. After

Implementation, Verification is where the team confirms with the user and project owners that

all their requirements are met by the application design. It is important in a user-oriented

application design to make sure the users received what they intended to get. For the final stage,

Maintenance, or ‘Testing’, the users use the system as they would normally and any problems

that arise are changed and fixed during this phase. This is a feedback stage where the waterfall

cycle has the chance to begin again if features and requirements were not met or are buggy

(Hughey, 2009). The team would repeat the software development cycle to include these

requirements in the application.

3.1.1 Advantages and Disadvantages of Waterfall

 There are many advantages to the Waterfall design cycle and they are a big reason why

this methodology has been so commonly used in the past. The first is that design flaws are

caught early on, preventing a lot of implementation headaches. Also, technical documentation

allows introduction of new programmers at the Maintenance phase, so they do not have to be

involved in the project from the beginning to fully understand requirements. Another advantage

is that the progress is very linear, and the goals are clear, so progress is easy to map. Finally,

testing is easy to do as it can be done around the functional specifications laid out in the

Requirements phase (Hughey, 2009).

12

This methodology has been used as the default for a long time, but it does carry some big

negatives that have caused teams to look for alternatives, like agile methodologies such as

Scrum. The first disadvantage is that users and clients are not usually able to define requirements

fully in an abstract phase as many need to see an application prototype, or first design, before

they can determine if it meets all the requirements they had in mind and this puts a heavy burden

on the last phase of the design process as some requirements discovered missing may be hard to

add afterwards. Next, the model does not cater to the possibility of requirements changing during

the development cycle. This is a big problem because people often come up with ideas along the

way and this design process forces all of those thought up requirements to wait until the last

phase, when it may be easier to add them in earlier. Finally, the biggest drawback is that often a

project takes substantially longer to come to fruition compared to if it had been designed with a

different development cycle with iterations, like the agile methods (Hughey, 2009). For these

reasons outlined our team considered the alternative agile methodology as we felt it may fit our

project a bit better.

3.2 Agile Manifesto

 To understand the more specific Scrum methodology, first there must be an overall

explanation of the difference between traditional and agile methodologies. The Agile Manifesto

does this in a simple and concise manner:

We are uncovering better ways of developing software by

doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more (‘Agile Manifesto’, 2001).

13

 This manifesto displays the goals of the agile methodology in comparison to the goals of

the traditional methodology. There is a larger emphasis on what is produced by a design

methodology and dynamic accomplishment of various goals. In an agile methodology there is a

great deal of focus on users, as well as application code written, to accomplish a project goal.

3.3 Scrum

 The Scrum process is an agile methodology that assumes that requirements are not easy

to understand early on and that they will be continuously changing and being updated, hence the

term agile. There is a large focus in the Scrum methodology on user requirements and

development team strategies, making it an agile type of methodology. Scrum has many features

that accompany the methodology to make the design process run smoothly. These include team

roles of Scrum Master, Product Owner, and Design Team, various meeting types, such as sprint

planning, daily scrum, sprint review, sprint retrospective, and backlog refinement, as well as

specific breakdowns of project elements, such as sprints and user stories.

14

3.3.1 The Steps of Scrum

Figure 2 SCRUM Software Development Paradigm Steps (Hughey, 2009)

To understand the benefits and disadvantages of Scrum, we must first explain all the

features that accompany a Scrum methodology. To do this in a way that is easy to follow we will

walk through a Scrum design process, including all the features and their uses, a simple picture

outlining the design process and timeline can be seen above. The Scrum methodology begins

when the ‘Scrum Master’, the facilitator of all meetings, ‘Product Owner’, the owner of the

specific product being designed, and the ‘Design Team’, those who do the design work, all get

together and create a ‘product backlog’, or list of requirements, in the form of user stories, and

even sometimes use cases. Next, the team breaks down the product backlog into multiple sprints,

or iterations of design, where they pick a small set of requirements to implement, called a ‘sprint

backlog’, at the ‘sprint planning meeting’. The team then goes out and performs the tasks they

chose at the planning meeting and gives daily progress reports at daily meetings, or ‘daily scrum’

(Hughey, 2009). At the daily meetings, progress, new goals, and any roadblocks are discussed

briefly by all team members. The next step is then to hold a ‘sprint review meeting’ where all the

15

work accomplished in a sprint is demonstrated to the team members. After every sprint there is

also a ‘sprint review meeting’ where the team reflects on each other’s progress. When all sprints

are completed, the last meeting is held, the ‘backlog refinement’ meeting, where the overall

sprint performance is evaluated, and the Product Owner gets a chance to review and add any

requirements (Prosoft Nearshore, 2015). This is a very simplified walkthrough of a Scrum

methodology format that explains the uses of all the tools involved with Scrum and the other

features of a Scrum method.

3.3.2 Advantages and Disadvantages of Scrum

Scrum is a newer methodology than the traditional Waterfall model, and it has some

useful advantages over the Waterfall method. Unlike the Waterfall model, Scrum does not need

all requirements to be outlined at the beginning of a project, it allows, and even expects, that the

requirements will be dynamic and present themselves as the project progresses. Scrum also

allows for inclusion of many programming practices, like use cases, without making any type of

practice go to the extreme. Finally, and probably the most defining aspect of Scrum is that it is

incremental, agile, and allows for software development to be divided into iterations, or sprints,

that let the teams progress enough without taking too much time for feedback and assessment

(Clinger, 2016).

Like the Waterfall method, Scrum is not perfect, and it has some disadvantages that

accompany its advantages. However, many of Scrums disadvantages come from the assumed

team size as, Scrum is meant for smaller teams, and when you apply it to larger groups it does

not scale very well. For instance, “Scrum assumes the development team is small enough to

manage itself and to fit into a small room for daily scrums” (Clinger, 2016). Also, if you are

making a large system there is some difficulty in coordinating tasks and you can run into issues

16

where one individual's module is not compatible with another's (Clinger, 2016). Overall, if you

are aware that you will be working in a smaller group, many of Scrum’s disadvantages become

moot points.

3.3.3 Our Team’s Scrum Implementation

 When evaluating our methodology options, it became clear to our team we would need an

agile approach because we wanted to perform many quick and dynamic iterations, and we did

not think all requirements would be apparent at the start of our design process. Our team was

also a very small group, with just two members, so we knew that the Scrum method would work

for us as we would not run into its disadvantages. Overall, we knew we wanted to use Scrum

because of our small team size, dynamic requirements, and our desire for multiple iterations, or

sprints.

 In implementing the Scrum methodology, we followed the format in the following ways.

Our Scrum Master was our advisor, Professor Wilson Wong and our Product Owner was Dr.

David Rawson, who compiled all the research and goals for the project. We held weekly Scrums

with all team members, as well as Daily Scrums over email between the two group members, as

this was most convenient. We followed the other meeting patterns the way they are laid out in

the Steps of Scrum section. Our team utilized user stories to define requirements for the Product

Backlog and Sprint Backlogs and those can be found in our Requirements and Design sections

later in this report. Overall, Scrum fit to our team dynamic and is the methodology we followed

to design and implement our database and website application.

17

4. Software Development Environment

4.1 Research

 During the process of picking the tools we would use throughout the project we had to

keep in mind our team size and project requirements that we will define below in the

Requirements section of this report. Our project required us to research and choose tools for

communication, code storage and file sharing repositories, an Integrated Development

Environment (IDE), a web server service, a stack framework, and a database.

4.1.1 Communication

 For communication we had a very easy time determining what would work for our team

because it is so small. Our options came down to Facebook Messenger, which is used for

communication between teammates directly and quickly, as well as email, which could be used

for communication between entire team, including owners and advisors, because it is a formal

messaging system. We also considered, and ultimately chose, to use email for daily Scrum

meetings between the two members because of its formality. Finally, we considered using SMS

because of the group size and because it is an informal messaging system, but it is only available

for mobile phones and is less convenient than using Messenger, which can be accessed on

mobile and desktop applications. Overall, we chose to utilize all the communications we

researched, except SMS because Messenger was more convenient.

4.1.2 Repositories

When we were beginning the project, we knew we wanted continuous synchronization

between teammate documents and for this we considered Google Drive. Drive is used for

18

documents and one of its benefits is that it allows simultaneous editing by multiple people. Both

team members had previously used Drive and were comfortable with its format and found it

convenient, so we opted for its use to store important project documents, such as the Proposal

and Meeting Minutes. Another type of repository we had to consider was for coding and for this

we stuck with, to put it simply, “what we knew best”, and that was GitHub. Both members had

already had existing accounts and had previous experience with how it handles version control

features, as well as experience with its built-in issue tracker that we could use for assigning tasks

in our sprint backlogs.

4.1.3 IDEs

Another straightforward choice for our team was what IDE to use in conjunction with

GitHub. We knew we would be using Python to code our framework and we were familiar with

PyCharm, a JetBrains product that supports Django, our considered web framework,

development, making it an obvious choice for our team’s framework coding. We also looked at

WebStorm, another JetBrains product, for front-end web development and because we could use

it for developing user-facing web pages and CSS it made it an easy choice for front-end IDE.

Finally, we were considering MySQL for our database, and chose it very early on, and we

discovered that MySQL Workbench, MySQL’s recommended IDE, gave us access to MySQL

databases in a graphical view, which we figured would be convenient for implementing our

database. Overall, the decisions we made for Communication, Repositories, and IDE were very

straightforward in comparison with our choices for Server, Framework, and Database, which we

will discuss next.

19

4.1.4 Server

From the start of our project we knew that the website developed for this project would

have to be hosted on a server to be publicly available on the Internet. The options we looked at

for web hosting were Dr. Rawson's existing domain with Reclaim Hosting, Heroku, or a Do-It-

Yourself (DIY) Approach hosted on a WPI-owned computer. We considered what languages and

software they offered, how transfer of ownership might work, and pricing. Because we expected

to transfer ownership of the website to a non-technical organization, we also considered how

they would use the server. We found that Reclaim Hosting offered the best interface for a

transfer of ownership to a non-technical organization. Also, because it was already in use by Dr.

Rawson we considered it the best option to host the web application. Reclaim Hosting offers

Shared Hosting for $30 per year (Individual Plan) and Dr. Rawson was already using this service

to host an interim website and to register the web domain ‘indexvirginiaprinting.org’. We also

discovered Reclaim Hosting is primarily for educators and students, and is based in Virginia,

which are both facts that make it a nice fit for this project. Reclaim provides online browser-

based access to an administrative website where website owners can manage their site. They also

have many premade applications (such as Wordpress) that are ready to be installed and run, or an

administrator can upload their own application to run. Additionally, Reclaim Hosting provides

database hosting. This means we could configure a MySQL database on this server instead of

needing to find a separate space to host our database. They also provide email hosting and allow

subdomains on domains. However, with Reclaim Hosting, we must manually configure our

application. There are many steps to this, such as uploading the source to the website,

configuring the application, and configuring the database. The administrative portal runs cPanel,

an open-source administration tool. This tool is not specific to Reclaim Hosting, so a new owner

20

could theoretically move the website to a new host and configure it in a similar way. Finally,

Reclaim Hosting handles updates to the underlying server and database software so that the

website administrator does not need to manage them.

The next server we considered was Heroku, a cloud hosting platform built mainly for

developers to host web applications. Their pricing model is based on the resources used by the

application. It supports many languages, including PHP, Python, Java, and JavaScript (with

Node.js). They also offer Heroku Postgres which could be used to host a database. Heroku is

primarily targeted at developers, which is not the target owner of our application in the future.

For example, they require use of git (or another version control system) to deploy an application,

which can be too technical for those with no development background. They also have

integrations with GitHub to automatically deploy code or for testing new code patches, and

because our team is small (only two people) and the project scope not too complex, most of those

tools we felt were unnecessary. Additionally, it would be an inappropriate platform to hand off to

a non-technical organization.

Finally, another approach would be to start from scratch. It is possible that we could have

transferred the application to an organization that is already hosting their own website and wants

to add it to their existing deployment space. However, not all web hosts support interactive web

applications, so the existing infrastructure may not be appropriate. To host a website from the

ground up, we would have needed to find a server at WPI willing to let us run an application and

database. This option was the most complex and requires background in website administration

and server maintenance. However, self-hosting provides the most low-level and host-agnostic

approach and so could be appropriate to hand off to another organization. But because of the

21

complexity of this approach and the relative complexity of the website administration field, this

is an inappropriate option for this project.

4.1.5 Framework

Broadly, we had two options: choose a traditional language and build the website from

scratch or choose a full-stack framework from which to start. We looked at building a PHP or

JavaScript web site or starting with the Python/Django or Ruby/Rails framework. We evaluated

these based on our current knowledge of the language, the features provided, databases

supported, where we could host them, and limitations imposed. We found that Python/Django

provides many useful features out of the box and supports our top choice for database (MySQL).

One of the most widely used ways of building websites is with PHP (“PHP: Hypertext

Preprocessor”), a scripting language primarily built and used for web development. It is

supported by most web hosting solutions, including Reclaim Hosting and Heroku. Reclaim

Hosting provides configuration of PHP scripts as part of their architecture. They run on the

common LAMP deployment stack: Linux/Apache/MySQL/PHP. However, none of the team

members have worked with PHP before and learning a new scripting language would be a huge

hurdle for this project.

JavaScript was another option and is widely used on both the front end and server side of

websites. On the server-side, node.js is a runtime environment that runs JavaScript code and can

produce dynamic content to serve on a website. With Node.js, only one language needs to be

used throughout the website as JavaScript can be used in both the front and back end. Node.js is

supported by Heroku, but not Reclaim Hosting, which we felt may be a problem since we were

leaning towards Reclaim Hosting.

22

Another choice was Ruby on Rails, a web framework that uses the Ruby programming

language. It follows “convention over configuration”, which means it has implicit defaults that

programmers do not need to specify. It is also “opinionated software” in that it encourages one

“best” way to do things. These limitations make getting started easier because there are fewer

choices to make but make it much harder down the road to do anything differently. Rails defaults

to using SQLite as a Database but also supports MySQL and PostgreSQL (‘Rails’, 2017). Like

PHP, neither developer on the team was familiar with Ruby on Rails, so it was not a good

candidate for this project.

Finally, our last option was to utilize Python/Django: and the LAMPy Stack. Python can

be an alternative to the “P” in the LAMP Stack, making it Linux/Apache/MySQL/Python,

alternatively called “LAMPy”. Django is a web framework that is built with Python, which was

familiar to both team members. It provides many features commonly found on websites out of

the box. These include an Object-Relational Model (ORM), Admin Interface, and HTML

Templating Language. The admin interface is a huge advantage as it provides a way for an

authenticated user to log into the application and add, delete, or edit objects in the database.

Django uses SQLite as a database backend by default, but can be configured to use PostgreSQL,

Oracle or MySQL. All these options made it a choice that was high on our list, and to top it off

we discovered that it was compatible with another possible choice for us, Reclaim Hosting.

4.1.6 Database

This was one of our simpler choices in architecture as well, the data we have conforms to

a relational model, so a simple database like MySQL is sufficient. SQLite is a serverless

database which is the default option in many frameworks and is easy to work with, however, it is

generally unsuitable for production as SQLite limits the administration of the database in a

23

production setting. Also, SQLite does a poor job handling multiple individuals editing a database

at once, which is not a good fit for this project because having many administrators was one of

our intended features. For these simple reasons we figured out MySQL would be our database

early in the project.

4.2 Chosen Technical Framework

We considered the various options available that we described above and how they

interacted with each other when making our decision. The website we decided ultimately would

be a Django application with a MySQL database running on Reclaim Hosting.

To summarize our original reasoning, we chose Reclaim Hosting because it was familiar

to Dr. Rawson and most appropriate for a general audience. We chose to use a web framework to

reduce the work for us and for that framework we chose Django because it supports the most

configuration settings, does the most abstraction of fine details, and provides a built-in admin

interface. Django also provides an Object-Relational Mapping to the database when database

objects (“models”) are defined in Python. This automatically generates the SQL need to create

tables and manipulate data. The only drawback to our choice we faced was that to deploy Django

on Reclaim Hosting, we had to use cPanel to configure a Python Application with Django as a

dependency. We then uploaded the code and configured a route for static files on Apache.

However, this was not a huge overall drawback in the larger scheme as it ended up working quite

smoothly. Finally, we chose to use MySQL because it is a widely-supported relational database

suitable for deployment on a server. To really explain our architecture, we have broken it down

in the following section.

24

4.3 Architecture Implementation

Figure 3: Software Architecture

To understand how the architecture fits together we will walk through the above

architecture diagram. First, consider a request made on the website at indexvirginiaprinting.org.

This HTTP request originates from the visitor's web browser and goes through the network to

our Server at Reclaim Hosting. The Apache listener provided by Reclaim Hosting has a set of

rules that determine how the request should be handled. If it is a static file, the provided Apache

server simply sends an HTTP response back to the client which is rendered in the visitor's

browser. However, if the requested page is part of our application, it invokes Django (via the file

we specify as our application's interface, or wsgi.py). The Django Application then takes the

request and matches the URL with a view function (via the URL Dispatcher). This is where we

25

determine the set of rules for how a URL translates to the page a user gets. The view function

takes a template and renders it. The template may also be filled with data from the database. In

this case, it calls methods on Python Objects which is translated to SQL based on the Object

Relation Model. These Python Objects become the Dynamic Page Content, or “Context” that is

sent with the template to the renderer. The renderer fills in the template with the data and

generates a filled template in the form of a HTML document. This is then sent back to the client

in an HTTP Response that is outputted to the user display.

To also show visually how the Django framework interacts with the architecture, we

broke that process we just described above down into the subsection shown in the figure below.

With this diagram we can visually trace how a call to the database is made by Django, where the

object relational model is used, as well as where exactly database versus static calls will occur.

26

Figure 4: Django Architecture

The pieces of this architecture we need to be primarily concerned about are the Object

Relational Model (ORM) Definition, the URL dispatcher rules, and the HTML templates. The

ORM is highly important in our architecture because it allows us to define the data in the

database and access the data without having to make direct queries, or searches, to our database

from our web server. The ORM in Django will essentially act as a gateway for us between our

database and web page. The URL dispatcher rules allowed us to define our URLs the way that

27

we liked and create a URL structure that fit our webpage and that allowed the HTML templates

to create pages that would flow together and have a sensible structure. Using these framework

and architecture choices and interactions, our team then laid out and finalized requirements for

the first sprint design that can be seen in the sections below. The goal of the first sprint was to

put this architecture into place to allow for easier expansion of the database and site content.

5. Software Requirements

5.1 Functional and Nonfunctional Requirements

 Our application’s requirements can be broken down into functional and nonfunctional

categories. Functional requirements are what users wish to do with our application, while

nonfunctional requirements are the system attributes our application possesses (Eriksson, 2015).

Both sets of requirements define our application and what the intended production product will

be capable of. We evaluated our goals outlined in this section near the end of our report in our

overall assessment.

5.1.1 Nonfunctional Requirements

 The nonfunctional requirements that our application must meet are longevity, scalability,

usability, and security. In our later assessment of these requirements we will refer to the

projected metrics defined here to determine success in meeting them.

Longevity: Our product owner would like to keep this application available for future use by

other individuals. To ensure this, we must design the application in a way that it can be

transferred between administrators without losing any data or functionality. The overall intended

28

length of use for this application after our final iteration, with only minor updating, is 10 to 15

years.

Scalability: Historical documents and databases are always being uncovered and expanded

upon, so we must ensure that our application will support being updated continuously as more

information and data is uncovered. We hope that our site will be able to handle at least 5,000

records, but ideally up to 10,000 records as well. That amount should allow for extensive

scalability in the future.

Usability: The application must be able to support administrative users, as well as users from the

general public. The administrative application is intended primarily for individuals of a

historical background, and for this reason it must not be too technically complicated, as we

cannot assume a technical background. The same applies for the application’s general users,

while there may be some technically savvy individuals that use it, technical literacy cannot be

assumed. We will consider usability successful if individuals, other than ourselves, can use the

site to locate a record on their own.

Security: While we are not dealing with sensitive information, is it still important to keep

security in mind while dealing with databases to prevent any data loss. Our application should

ensure that the database is not write-accessible to the public and that the general site is secure

and not openly vulnerable to attack. This requirement will be considered successfully met if the

site does not allow unauthorized users to edit pages and if it does not allow unauthorized access

to administrator accounts.

5.1.2 Functional Requirements

The functional requirements that our application must meet are broken into categories

relating to: storage of data, retrieval of data, entering of data, account authorizations,

29

administration of site, and cross-reference ability. Our requirement analysis will refer to three

different types of user roles: superuser, trusted historian, and general user. The superuser is a

user of the application with website formatting control and various other administrative

capabilities. The trusted historian is an administrator of the site itself with ability to edit the

dataset. The general user does not have any administrative or editing capabilities but can view

the site application. In the analysis, roles of superuser and trusted historian may overlap and will

be referred to as administrators.

Store Data: The application will be able to store data on Virginia printing in a database server

that can later be accessed.

Retrieve Data: The application will be able to retrieve saved data from the database server for

displaying on the site or editing by an administrator.

Account Authorizations: The application will have three user types with three authorization

levels. The superuser will have the most authorization with ability to make direct changes to the

site structure, content, users, and location with superuser privileges. The trusted historians will

have editing privileges to the site database and record pages, but no ability to alter entire site

characteristics. The general users will have read-only authorization to the site application. The

application will allow both the superuser and trusted historians to log into the site to access

administrative functions.

Site Administration: The application will allow those who have administrative abilities to log in

and have proper access to modify the database in various ways given their respective

administration levels. For example, the application would allow a super user to login and edit site

appearance or location of the database, while a trusted historian would be able to login and make

edits to the database entries.

30

Help Screens & User Documentation: The application will show helpful tips and instructions

on how to use the site at the request of a user.

Cross-reference Ability: Our product owner wished to have this application connect records to

one another based on their shared relationships. For example, a newspaper with many editors

would contain links to the pages about those editors. Another goal of our application in terms of

cross-referencing was to connect records to external sources, so that a user could find the original

source of a record with ease. Historical data is all part of a huge context and the end goal of our

application is that it will be able to cross reference itself and other databases to relate records and

pages.

5.2 Initial Epics and User Stories

1. As an administrator, the application will allow me to safely store records relating to the

Virginia printing trade before 1820.

a. As a superuser, I want the application to allow me to back up the database to

ensure data longevity and security.

b. As a superuser, I want the application to allow me to save data records on a

remote server to ensure data longevity.

2. As a general user, the application will allow me to search records relating to the Virginia

printing trade before 1820.

a. As a general user, I want to be able to search for a record by a specific field in

order to easily use the site and easily access specific records.

b. As a general user, I want to be able to search for a record by more than one

criteria in order to easily access certain records.

31

c. As a general user, I want to be able to sort search results by a field in order to

make it easier to find a specific record I am searching for.

3. As a general user, the application will allow me to browse records relating to the Virginia

printing trade before 1820.

a. As a general user, I want to browse by different data patterns in order to quickly

find relevant records.

b. As a general user, I want to browse records in chronological order in order to

gather an understanding of the data and what it represents.

c. As a general user, I want to view records on a map of where they were published

in order to gather a deeper understanding of the dataset.

d. As a general user, I want to view a newspaper lineage on a timeline in order to

understand the chronology of the newspaper dataset.

e. As a general user, I want to view help tips on how to browse the site in order to

use the site to its full potential.

4. As a general user, the application will allow me to view records relating to the Virginia

printing trade before 1820.

a. As a general user, I want the application to show me where to find an original

version of an imprint in digital form so that I can learn more about the record.

b. As a general user, I want the application to save a permanent URL for a record so

that I can return to where I left off in research or share my findings with others.

c. As a general user, I want to be able to follow a record to associated records in

order to expand my knowledge on a record and find more relevant history.

32

d. As a general user, I want to be able to cite a record I have found in a standard

format so that I can accurately share and reference it to other individuals.

e. As a general user, I want to be able to use accessibility tools on the website in

order to browse as easily as every other user.

5. As an administrator, the application will allow me to edit records.

a. As an administrator, I want to add an imprint to the database application in order

to expand the applications knowledge base and keep it up to date.

b. As an administrator, I want to add a biography to the database application in order

to expand the applications knowledge base and keep it up to date.

c. As an administrator, I want to add a newspaper lineage to the database application

in order to expand the applications knowledge base and keep it up to date.

d. As an administrator, I want to add a new type of record to the application in order

to expand the applications knowledge base and keep it relevant.

e. As an administrator, I want to remove a record, regardless of type, in order to

keep the collection accurate.

f. As an administrator, I want to flag a record or field as inaccurate, regardless of

type, in order to keep the collection accurate and up to date.

g. As an administrator, I want to edit existing imprints in order to keep the collection

accurate and up to date.

h. As an administrator, I want to edit existing newspaper lineages in order to keep

the application accurate and up to date.

i. As an administrator, I want to edit existing biographies in order to keep the

application accurate and up to date.

33

6. As a superuser, the application will allow me to manage user accounts.

a. As a superuser, I want to be able to add a new superuser in order to allow the site

application to change ownership.

b. As a superuser, I want to be able to remove a superuser in order to allow the site

application to change ownership.

c. As a superuser, I want to be able to update a superuser in order to allow the

administrator details to stay accurate.

d. As a superuser, I want to be able to add a new trusted historian in order to allow

the site application to have up to date curators.

e. As a superuser, I want to be able to remove a trusted historian in order to allow

the site to have up to date curators.

f. As a superuser, I want to be able to update a trusted historian in order to allow the

site to have up to date curator information.

7. As a superuser, the application will provide administrative capabilities.

a. As a superuser, I want to install the application on a server in order for it to be

accessed by other administrators and the general public.

b. As a superuser, I want to migrate the application to a new server and preserve the

database in order to move the site location in case of ownership change.

c. As a superuser, I want to back up the database in case something happens to my

data.

d. As a superuser, I want to roll back the database to an earlier version where my

data is not corrupted.

34

5.3 Initial Use Cases

Use Case #1

1. Name: Add a Record to the Database

2. Participating Actors: Administrator

3. Entry Condition:

a. The administrator is logged into the site already.

b. The record being added to the database is not already present.

4. Exit Condition:

a. The new record is present in the database.

b. The addition is recorded in an activity log.

5. Flow of Events:

a. Administrator chooses what kind of record to add.

b. Administrator requests to add their chosen record type to the database.

c. The application asks the administrator to describe the record, based on its type.

d. Administrator submits the information to the application.

e. Application saves the information.

f. Application records the action in an activity log.

g. Application shows a confirmation to the administrator.

6. Alternate Flow:

[Cancel]

1. Administrator chooses to stop at an intermediate step.

2. The application discards any information entered.

3. The application returns to the previous activity screen.

35

[Duplicate Found]

1. The application finds a duplicate record based on the information entered by the

Administrator

2. The application warns the Administrator they are creating a duplicate.

3. The application throws out the duplicate entry and it is not added to the database.

Use Case #2

1. Name: Edit a Record

2. Participating Actors: Administrator

3. Entry Condition:

a. The Administrator is currently viewing the record they want to edit.

b. The Administrator is logged in.

4. Exit Condition:

a. The record is updated in the database with new information.

b. The edit is recorded in an activity log.

5. Flow of Events:

a. Administrator requests to edit the record they are viewing.

b. The Application asks the administrator what they want to change.

c. Administrator submits the information to the application.

d. Application saves the information.

e. Application records the action in an activity log.

f. Application shows a confirmation to the administrator.

6. Alternate Flow:

[Cancel]

36

1. Administrator chooses to stop at an intermediate step.

2. The application discards any information entered.

3. The application returns to the previous activity screen.

Use Case #3

1. Name: Login

2. Participating Actors: Administrator

3. Entry Condition:

a. The Administrator has a verified account for the application with valid

credentials.

b. The Administrator is not already logged in.

4. Exit Condition:

a. The Administrator is logged in.

b. The login is logged in the activity log.

5. Flow of Events:

a. Administrator requests to log onto the system using valid credentials.

b. The application logs the Administrator in and provides them access to

administrative functions.

c. The application records the login attempt in the activity log.

6. Alternate Flow:

[Invalid Credentials]

1. Administrator credentials are not registered with the system.

2. The application cancels the login attempt and the Administrator is not logged in.

3. The application records the login attempt in the activity log.

37

Use Case #4

1. Name: Basic Record Search

2. Participating Actors: General User

3. Entry Condition:

a. None.

4. Exit Condition:

a. The results of the search are presented to the user.

5. Flow of Events:

a. The user requests the application to search the database given a search term.

b. The application searches the database for all records matching the search term.

c. The application returns the results of the search to the user.

6. Alternate Flow:

[Cancel]

1. The user requests to cancel search at intermediate step.

2. The application does not return search results and returns to previous activity

screen.

[No Results]

1. The application cannot find any records matching the search term.

2. The application does not return search results and instead returns a message to the

user about no matching records.

Use Case #5

1. Name: Advanced Record Search

38

2. Participating Actors: General User

3. Entry Condition:

a. None.

4. Exit Condition:

a. The results of the advanced search are presented to the user.

5. Flow of Events:

a. The application provides the user with advanced search terms.

b. The user requests the application to search the database given selected advanced

search terms.

c. The application searches the database for all records matching the search terms.

d. The application returns the results of the search to the user.

6. Alternate Flow:

[Search First Then Advanced Search]

1. The user requests the application to search the database given search term.

2. The application searches the database for all records matching the search term.

3. The application returns the results of the search to the user.

4. The application presents the user with advanced search options.

5. The user selects advanced search options.

6. The application performs the search again with the advanced options.

7. The application returns the results of the search to the user.

[Cancel]

1. The user requests to cancel search at intermediate step.

39

2. The application does not return search results and returns to previous activity

screen.

[No Results]

1. The application cannot find any records matching the search term.

2. The application does not return search results and instead returns a message to the

user about no matching records.

Use Case #6

1. Name: Browsing Records

2. Participating Actors: General User

3. Entry Condition:

a. None.

4. Exit Condition:

a. The records are displayed to the user in browsable format.

5. Flow of Events:

a. The application presents patterns of browsing to the user.

b. The user requests to browse the records in specified pattern.

c. The application presents the records to the user to be browsed in the correct

specified pattern

6. Alternate Flow:

[Return Home]

1. The user requests to stop browsing and return to the main site page.

2. The application returns the user to the main site page.

Use Case #7

40

1. Name: Requesting Help Documentation

2. Participating Actors: General User

3. Entry Condition:

a. The user is on a page that offers help documentation.

4. Exit Condition:

a. The user is provided help documentation.

5. Flow of Events:

a. The user requests help documentation on a page.

b. The application presents the help documentation for the page to the user.

6. Alternate Flow:

[Cancel]

1. The user requests to no longer see help documentation.

2. The application stops providing the help documentation to the user until requested

again.

Use Case #8

1. Name: View Activity Log

2. Participating Actors: Superuser

3. Entry Condition:

a. The superuser is logged into the site.

4. Exit Condition:

a. The activity log is provided to the superuser.

5. Flow of Events:

a. The superuser requests to view the site activity log.

41

b. The application shows the site activity log to the superuser.

6. Alternate Flow:

[Cancel]

1. The superuser cancels viewing the site activity log.

2. The application returns the superuser to the previous activity screen.

Use Case #9

1. Name: Restore Previous Version

2. Participating Actors: Superuser

3. Entry Condition:

a. The superuser is logged on.

b. A previous version of the site exists.

4. Exit Condition:

a. The specified previous version of the site is restored.

5. Flow of Events:

a. The superuser requests that the application restores the site to a specific version in

the activity log.

b. The application confirms and restores the site to the previous version in the

activity log.

c. The application records the restoration in the activity log.

6. Alternate Flow:

[Cancel]

1. The superuser cancels the restoration at intermediate step.

42

2. The application does not restore and returns the superuser to the previous activity

screen.

Use Case #10

1. Name: Register an Administrator

2. Participating Actors: Superuser

3. Entry Condition:

a. The superuser is logged in.

b. The administrator is not already registered in the application.

4. Exit Condition:

a. The administrator is now registered in the application with correct credentials.

5. Flow of Events:

a. The superuser requests that another administrator be registered in the application

given a set of credentials.

b. The application confirms the credentials of the new administrator account and

creates the new account.

c. The application confirms creation with superuser and records the creation in the

activity log.

6. Alternate Flow:

[Cancel]

1. The superuser requests to cancel account creation at intermediate step.

2. The application does not make the account and returns the superuser to previous

activity screen.

[User Already Present]

43

1. The superuser requests to add an account that already exists.

2. The application informs the superuser of duplicate credentials, does not make the

account, and returns the superuser to previous activity screen.

Use Case #11

1. Name: Submit an Edit Request

2. Participating Actors: General User

3. Entry Condition:

a. The user is viewing the page of the record they think needs an edit.

4. Exit Condition:

a. The edit is sent to the superuser for review.

5. Flow of Events:

a. The user requests that a record needs to be edited.

b. The application allows the user to submit their detailed request to the superuser.

c. The application provides the request to the superuser for review.

6. Alternate Flow:

[Cancel]

1. The user cancels the request for edit at an intermediate step

2. The application does not send the request to the superuser and returns the user to

the previous activity screen.

44

Use Case Diagram

Figure 5: Use Case Diagram

45

6. Design

6.1 Preliminary Design

For the first iteration, or sprint as it is referred to in SCRUM, we planned to give

ourselves three weeks, compared to the one-week length of our other planned sprints, to create a

minimal application version as a foundation for the rest of the sprints to build upon. Our goal

was to focus primarily on user stories relating to database integrity and setup, simple browsing

capabilities, setup viewing capabilities on the website, and establish simple administrator

capabilities, such as logging in and editing administrator accounts. We also chose to implement

the use cases involving editing a record, registering and logging in as an administrator, and

browsing records. These stories and cases represent a minimal version of our application with a

functional database and admin capabilities, but only browsing capabilities for the front end. We

felt that setting up the back end in the first sprint and leaving the rest of the sprints to really work

on the front end was a good plan, because the front end would require the most interaction with

our project owner to ensure the site was looking as he intended.

6.2 Initial Architectural Design

To get a feel of our design development throughout the project we compare our first

sprint architectural design to our final architectural design. For our initial sprint we created the

following entity relationship diagram and class diagram to guide us through the implementation

process.

46

6.2.1 Initial Class Diagram

Figure 6: Initial Class Diagram

 When we began planning our first sprint we wanted to create a class diagram that would

help us develop our database and overall site structure. We began with the three classes Imprint

Record, Journal, and Person. All three of these classes would contain all information relating to

the physical imprints, newspaper journals, and biographies gathered in the preliminary research

done by Dr. Rawson. The fields in these classes represent the actual gathered data regarding a

physical document, or person, related to the Virginia printing trade. The classes that we created

that includes a “/” in the title, such as Person/Journal, represent the physical relationships

47

between two of the entities in the research. For example, The Person/Journal class contains a

Person and Journal indicating that that Person had some form of relationship with that Journal,

possibly as an author, printer, or something of that nature. The purpose of the Precise Date class

is to represent some of the vagueness that is inherent to researching with historical dates, as

sometimes dates have a level of preciseness, and we felt we should try to represent that in our

classes. Finally, the class Bibliography was intended to reference outside bibliographic

references that some Journals or Imprint Records contained, such as if that record could be found

in the Library of Congress. The separate bibliography class would be used to achieve external

cross-referencing through links to the bibliography an imprint or journal was a part of, and we

represented this real-life relationship with the ‘ImprintRecord/Bibliography’ and

‘Journal/Bibliography’ classes. We felt it important to pull Bibliography out as there are many

different bibliographic reference databases referred to by the research that could later be

externally referenced on our site. Overall, we felt this class diagram was a good initial setup for

our website as it allowed us to highlight the three main entities of our research while

encompassing the many relationships between them. The next step we took in planning our first

sprint was to take this initial class structure and apply it to our database in the form of an Entity

Relationship Diagram (ERD), which we will show and explain in the next section.

48

6.2.2 Initial Entity Relationship Diagram

Figure 7: Entity Relationship Diagram

 Our initial Entity Relationship Diagram (ERD) does a good job at breaking down our

three main models that we described above, Imprint Records, People, and Journals and further

shows their relationships that we were trying to capture in our database and classes. Imprint

records, Journals, and People refer to the physical records and individuals related to the Virginia

printing trade that were researched by Dr. Rawson. Bibliographies refers to the outside sources,

or databases, that people can find references to these records. In terms of the relationships, an

imprint record can be associated with a person in the print trade, as well as be referenced by a

bibliography. A person can have associations with other people in the trade and be associated

with an imprint record or journal. A journal can be associated with a person or included in a

bibliography. Finally, a bibliography can contain references to both imprint records and journals.

49

Using both our initial class diagram and entity relationship diagram, we began our

Implementation phase, during which we made some design changes that ultimately led us to our

finalized design which we will now describe.

6.3 Final Design and Notable Changes

 Overall, our final design followed closely to our initial design plan with some minor

changes. We completed our first sprint focusing on all the features that we stated in our initial

plan that would provide a minimal version. Our ERD did not change at all, but because we did

not implement every feature we intended to, our class diagram did change in terms of classes we

used and how we represented the relationships between them. We have drawn up our finalized

class diagram in the next section to explain in detail the design changes that we made.

50

Figure 8: Final Class Diagram

6.3.1 Class Diagram

The first obvious change that we made to our class diagram was to remove many of the

relationship, or ‘/’, type classes that we had in our initial design. The reasoning behind this is that

our web framework we decided on using, Django, does a large amount of relationship

management between models for us using foreign key references. The second obvious change

was that we ended up not using the Precise Date or Bibliography classes. We did not end up

needing those classes as those features were not prioritized for satisfactory completion of the

site, and thus were left unimplemented due to time constraints. We also added two new classes to

our diagram, Generic Search Result and Search. Generic Search Result was used to make our

search feature easier to implement across the various record types. Search was an optional built

51

in class provided by Django that allowed us to implement Boolean searching. Finally, the last

change that we made was to divide our Journal class into two separate classes, Newspaper

History and Newspaper Citation. Originally, we had these two classes combined representing the

newspaper itself, and lineage the newspaper paper belonged to was simply a field in the class.

However, as the project progressed we realized that to accomplish good internal referencing

between records we needed to separate the newspaper from the lineage it belonged to. Finally,

we added two fields to our three main models, Notes and Associates. The notes field was

necessary because we were provided text documents for every record and to capture the full

detail about each record, to later be displayed on our site, there was a section of notes that we

needed to add into our models. The associates field is how we implemented Django’s

relationship handling, as it provided the models a way to reference one another without having to

have any separate relationship classes. Overall, these are the changes we made to our design

throughout our implementation process which we will now break down into greater detail.

52

7. Implementation

 In this section we will explain the steps we took during our implementation phase for the

application. We will describe our initial plan for our first sprint, and how that plan was carried

out. We also go into detail for each sprint about which user stories were accomplished and

provide a burndown chart to conveniently show our projected effort versus what we actual

accomplished. After we describe every sprint we will explain how we tested our user stories and

evaluate our overall project success.

7.1 Original Expected Project Timeline

 For our original expected timeline, we expected to have a first sprint done within 3 weeks

of the start of B term. We then expected our subsequent sprints to take about a week and to be

close to our final application version three full weeks before the end of B term. Throughout the

term we expected to hold weekly meetings as sprint planning meetings, sprint review meetings,

and sprint retrospective meetings. We originally planned that for C term we would have a nearly

finished application so that we could spend the majority of C term working on this report and our

project presentation. Overall, we did not follow the entire planned timing, but we did accomplish

our first sprint goals and the overall goal of creating a finalized application by the end of the

project. The following are the steps we took towards reaching that goal and the actual timeline

that we followed.

53

7.2 Sprint 0

1. Create index pages

2. Upload .pdfs of every record to Reclaim Hosting

3. Define URL patterns for the site

4. Create record placeholder pages

5. Create test objects with some .pdfs

6. Configure app to change names to beta domain

7. Create .csv files for data to be added to database

The goal of our initial sprint was to set up a bare minimum application so that we could

expand upon it weekly in the sprints that followed it. To prepare for the first sprint, we had a

small iteration before our first that was simply to set up the structure of our site architecture. It

did not cover any specific user stories, but it was critical to starting our application. We listed the

objectives that we met during this initial sprint above. Our first obstacle that we encountered was

adding the original research files to the database from an excel sheet so that they could be

accessed by the site. The MySQL database that we used was able to handle .csv files so we

wanted to convert our provided spreadsheets into this format. We had a few problems matching

column values to class attributes and had to pull some of the data out into separate columns so

that we could use it in our classes. For example, we had to take the name field in the Biography

sheet we were given and use that to pull out First Name and Last Name fields. For this reason,

we did not finish adding our records to our database in this sprint but did create the .csv files that

would allow them to be added later. We then used Django to create index pages, defined our

URL patterns, and created placeholder pages. Finally, we wanted to have access to our data on

Reclaim itself so we added our pdf files to the site to be referenced later and created some test

objects using Django’s ORM (to see the code implementation for this see 'populate_db.py' in our

submitted code repository), so we could test our site’s general linking and referencing between

two model objects. We have also included a screenshot below of these test objects, showing how

54

they were initially displayed on our site. By the end of this sprint we had a version of our site

that was very minimal and could display our model relationships correctly with the test objects.

Looking to our burndown chart below, our initial sprint was a success in terms of effort as we

basically met our expected effort throughout the entire sprint. Leaving this sprint, our major goal

was to add the data into the models using the .csv files as that would give us a completed initial

version.

Figure 9: The minimal Index page displaying links to the four test objects (Sprint 0)

Figure 10: Sprint 0 Burndown Chart

7.3 Sprint 1

1. As a superuser, I want the application to allow me to save data records on a remote server

in order to ensure data longevity.

2. As a general user, I want the application to save a permanent URL for a record so that I

can return to where I left off in research or share my findings with others.

3. As a superuser, I want to be able to add a new superuser in order to allow the site

application to change ownership.

55

4. As a superuser, I want to be able to remove a superuser in order to allow the site

application to change ownership.

5. As a superuser, I want to be able to update a superuser in order to allow the administrator

details to stay accurate.

6. As an administrator, I want to remove a record, regardless of type, in order to keep the

collection accurate.

7. As a general user, I want to browse by type of record in order to quickly find relevant

records.

Sprint 1 is where a bulk of our site was created, and the bare minimum foundation was

laid for the rest of the project. In this sprint we allowed records to be saved to the database and

used the .csv files to add all the initial records to the database. We have included a screenshot

below to show how the records on the site were initially displaying their fields on their own

respective pages. The records that we added also could be removed in this sprint. For our

administrator user stories, we completed the tasks of adding, editing, and removing

administrators by using Django’s built in admin pages. Finally, we also accomplished basic

browsing by being able to view all the records in our database in an index page. Originally, we

had intended to accomplish more in terms of record manipulation this sprint, however it was

more complex than we thought, and for that reason our burndown chart shows we had to

accomplish a lot of our tasks mid-way through the week instead of steadily accomplishing them

throughout the entire week. With the ending of this sprint providing us records to manipulate and

a page structure, the sprint that followed was focused on formatting the browsing abilities and

administrative record manipulation.

56

Figure 11: Detailed biography page for Adams, showing all basic data (Sprint 1)

Figure 12: Sprint 1 Burndown Chart

7.4 Sprint 2

1. As an administrator, I want to add an imprint to the database application in order

to expand the applications knowledge base and keep it up to date.

2. As an administrator, I want to add a biography to the database application in order

to expand the applications knowledge base and keep it up to date.

3. As an administrator, I want to add a newspaper lineage to the database application

in order to expand the applications knowledge base and keep it up to date.

4. As an administrator, I want to edit existing imprints in order to keep the collection

accurate and up to date.

5. As an administrator, I want to edit existing newspaper lineages in order to keep

the application accurate and up to date.

6. As an administrator, I want to edit existing biographies in order to keep the

application accurate and up to date.

7. As a general user, I want to browse records in chronological order in order to

gather an understanding of the data and what it represents.

This sprint we chose to work on the admin site side of the application in order to

implement record manipulation, such as adding or editing records in the database using the site

interface. On the admin site, we successfully added the ability to add and edit all record types in

57

the database with the proper credentials, and the format in which record editing is displayed to

the user is shown below in Figure 13. We also worked on the main site format by adding a

chronological browsing page that let us view imprint records by date, mimicking a timeline,

which can be seen in Figure 14 below. Our site was coming along pretty much to plan at this

point, we had a lack of accomplished effort, or tasks, in the latter half of this sprint because

record manipulation was quite difficult to implement, but we started the week out strong by

tackling the browsing first. Our third sprint planning meeting is when we decided we needed to

add a notes field to every record to capture information not displayed in the other fields, and we

also decided that we needed to implement the cross-referencing between records in our third

sprint.

Figure 13: The admin interface for editing a Biography (Sprint 2)

58

Figure 14: Chronology page displaying imprint records (Sprint 2)

Figure 15: Sprint 2 Burndown Chart

7.5 Sprint 3

1. As a general user, I would like to be able to view the related narrative history,

individuals, and imprint records of a newspaper lineage.

2. As a general user, I would like to view related imprint records, individuals, and

newspaper variants to a specific individual.

3. As a general user, I would like to view related individuals to a specific imprint

record.

59

With the goal of cross-referencing in mind we started our third sprint purely focused on

completing the models of every record on the site and connecting them to one another. This took

us a long time as we had to receive feedback from our client on how records should be associated

and how the field for each records note should be added to the record pages. We them had to take

our clients feedback and edit our site structure based upon it. Our biggest challenge was how to

convey all the details of a record in a way that was sensible and visually appealing for the users,

and we did not complete this task until our fourth sprint, explaining our bumpy task completion

throughout the week and why it ended on us not having the expected amount of tasks, or effort,

completed that we would have liked. During this sprint we did accomplish the setup for

displaying record details however, as we wrote python scripts to translate the provided

spreadsheets into data that could be added to MySQL. By adding the data to our MySQL

database, we would be able to format the data in the upcoming sprint to display all the details

about each model. Additionally, we had to add the relationships between entities, such as

associations between two tradespeople, to accomplish cross-referencing between two records on

our site. The format we chose for cross-referencing was to include links on each record page that

could bring a user to the related record pages, how we chose to display this can be seen in Figure

16 below. Overall, this sprint was a success because it set up our plans for our next sprint and

accomplished a major application requirement of cross-referencing.

Figure 16: A portion of the detailed biography page showing page links (Sprint 3)

60

Figure 17: Sprint 3 Burndown Chart

7.6 Sprint 4

1. As a general user, I would like to view notes for newspaper citations.

2. As a general user, I would like to view notes for newspaper lineages.

3. As a general user, I would like to view notes on imprint records.

4. As a general user, I would like to view notes and personal data for people in the

database.

We began sprint 4 by finishing our record page design in a way that pleased our client

and conveyed the data of each record broken up by model fields. An example of this can be seen

in Figure 18 below. We chose to display the record pages with each section being a field of the

model because we felt it was the easiest way to convey the most information to a user about a

record without having it be an overwhelming amount of data. Our next focus was making sure

every field from our models was imported into our site, including the “Notes” field found in our

models. This task was challenging because we had to find a way to pull a block of text from a

converted .pdf files and keep some logical structure. This task took us a long time to plan as we

had to find a way to make every record’s “Notes” be similar in structure. Our solution was to

write a python script for each record type that could pull the notes from a plain text file, which

we got by converting every .pdf file, into an excel sheet to be converted to a .csv file that we

could then import into MySQL. We then merged the notes data with the data already on the site

61

by manually manipulating the database. Overall, this one task took us the entire forth sprint to

complete and thus our effort burndown is very under the goal until the end of the week when we

finished our planned tasks. Upon completion of this sprint we had our completed models on the

site and set our goals to our final tasks of search functionality and user interface design.

Figure 18: Individual biography page for Adams, displaying all data (Sprint 4)

Figure 19: Sprint 4 Burndown Chart

7.7 Sprint 5

1. As a general user, I would like to search for a term in newspaper citations.

62

2. As a general user, I would like to search for a term in newspaper lineages.

3. As a general user, I would like to search for a term in imprint records.

4. As a general user, I would like to search for a term in an individual’s record in the

database.

5. As a general user, I would like to have accessibility features on each page, such as a

toolbar.

6. As a general user, I would like to search specific fields in newspaper citations for a term.

7. As a general user, I would like to search specific fields in newspaper lineages for a term.

8. As a general user, I would like to search specific fields in imprint records for a term.

9. As a general user, I would like to search specific fields in an individual’s record for a

term.

Search was the hardest part of our implementation process as it provided the most

technical difficulty. For this sprint we took the 6 weeks of C term to implement full-text search,

field-based search, as well as create usability features for our site that included a toolbar. We

divided search into the two separate categories of full text, which means searching all the models

and all the fields for a string, and field-based search, meaning only searching certain fields for a

provided phrase. Our full text search did not take too long to implement and is simply a search

bar on the bottom of our sites homepage that takes an inputted search term and searches every

model’s title, author, and notes fields for that value.

While full text search did not take too long to implement, it did take a very long time to

figure out the logic behind field-based search because there are many possible ways to

implement such a feature. The result of how we chose to format our field-based search can be

seen in Figure 21 below. We opted to have every field be a check box on the left side of the

page, broken up by model type. A user could then select the fields they wanted to either search or

not search and enter a new keyword in a search bar at the bottom of the left pane to begin a new

refined search.

63

We also had to consider formatting of our site and how a user would view the page and

search results. Overall, this was the most satisfying feature to finish and brought our application

from the bare minimum to the final version, the completed look of our site homepage can be seen

in Figure 20 below. We used a stylesheet and the same header on each page to implement the

navigation toolbar and design on every page of our site, giving it a uniform layout throughout.

The navigation toolbar contains links to the homepage, the various browsing index pages, and

the about page for the project, it can be seen in both figures below. The search in the header is

another full text search that brings the user to the search results page, where they can conduct a

refined search, just like the search bar on the main homepage.

This sprint took much longer than expected to implement and had three big tasks in it that

each took a large amount of time to work on and were each finished at different times, which is

reflected in our burndown chart below. We had periods of time where we would only work on

one of the tasks and this severely limited the total amount of tasks we completed throughout the

sprint. If we had to redo this project we would have probably planned to give these tasks more

time, or break them into smaller tasks, as they were very critical to the completion of our project

and we felt that with better planning they could have been implemented quicker and with more

detail.

64

Figure 20: The index page after the 5th Sprint

Figure 21: The results displayed, next to “Refine Search” form (5th Sprint)

65

Figure 22: Sprint 5 Burndown Chart

8. Testing

To test the correctness of our application we used informal validation and user

acceptance tests. The primary things we checked were that individual record pages displayed the

correct information from the spreadsheets provided by Dr. Rawson, that links between pages

worked correctly, that the admin could make changes that were visible to a user on the site, and

that search returned appropriate results. When extracting data from the spreadsheets and text files

we verified correct output on at least 1-2 records of each type before attempting to extract from

all records. Once the data was on the website we viewed at least 3 records of each type randomly

and verified the information was displayed as we expected. We know that these tests are not

comprehensive but were unable to complete more in depth testing due to project time constraints.

To verify that the admin could make visible changes to the content of the website we

logged into the administrator site and added test records through the admin interface. Then we

viewed these records on the site, confirming the data we added displayed. We would then delete

the test record to test the admin's ability to delete records, all these user level tests were

successful.

66

To validate search, we tested simple queries on a subset of the data. For most of search

testing we only looked at biographies. For example, we searched for names known to be in the

database, such as “Adams”, and verified the application returned all instances of biographies

with the name “Adams”. We then expanded these tests by changing which record types and

fields we searched. Overall, each search provided the correct results and we could confirm that

our search functionality was behaving correctly/

Our testing proved that the application behaved correctly in displaying, searching, and

extending the records in the database. Our client also performed acceptance tests and usability

tests from the perspective of a historian and confirmed the site was working as intended.

9. Assessment

Overall, we met our minimal functional and nonfunctional requirements and the project

was an overall success. We successfully created a site that was accepted by our project owner

that contained all the minimal functional requirements, including storing data, retrieving data,

entering data, authorizing accounts, site administration, and site cross-reference ability. We did

not get to fully complete site administration, as there are some features on the administration site

which were not implemented, such as creating a trusted historian. We also did not fully

accomplish cross-reference ability since the site only cross-references itself, and not outside

bibliographic references. With more time we would have loved to implement these

functionalities.

In terms of non-functional requirements, longevity and scalability were met by our choice

in application architecture. Our choice of Django allowed us to make certain that our application

would be updatable for at least 10 years, the initial goal, as there are built in ways for this

67

application to allow for administrative users to update the site continuously. Our security

requirement ended up not being a priority, but we feel we met the minimum requirement as

general users cannot edit our site records and people cannot gain access to edit records without

proper credentials. Usability was also confirmed in user acceptance testing when our client

confirmed the project was working as intended and considered to be an overall success.

We were successful in our non-functional project goals, but we did have some originally

intended functionalities that we had to leave out. Such features included providing different types

of administrators, viewing all records on a map, and citation links to outside references. If we

could do the project over we would probably try to start our search feature much sooner, as this

is what took up a majority of our project time. We also would try to limit our goals early on to

keep focused on the primary functionalities of the site.

10. Future Work

We hope to see this project handed to another group of students in the form of an IQP or

MQP. We feel that there are some unfinished user stories that really would help the site stand

out, such as viewing records on a map, that we just did not have time to complete. We are very

happy with where our work has ended up, but we feel there are many opportunities for

expansion. Our user manuals are tools that we hope can guide potential future designers in

furthering this application’s capabilities. An IQP would be great for this as there is a lot of

background in place already and they would have to just research a few of the tools to start

expanding on our site’s foundations.

68

11. Conclusion

By the completion of this project our team successfully accomplished our goal of creating

a historical database backed website, containing the records relating to the Virginia printing trade

prior to 1820, for our client Dr. Rawson that can be searched, extended, and is user friendly. By

researching the records provided by Dr. Rawson and the layouts and features of similar historical

sites, we were able to develop a vision for our site’s final appearance and function that would

guide our implementation process. We also researched what frameworks, servers, and databases

would best suit this type of project, and ultimately, we decided a Django application framework

hosted on Reclaim Hosting with a MySQL backend would be the best fit for our requirements.

We then chose to utilize a SCRUM methodology throughout our design and implementation

phases to track our requirements and ensure that none of the essential ones were left out. Our

primary focus was to create our site with features that allowed it to be searched, extended, and

easily used and we accomplished this in five sprints spanning the course of B and C term.

Although we did not achieve every proposed feature, we did achieve our core functionality goals

by creating a site that was searchable, expandable, and user friendly. Overall, our client and team

both consider the project, and final application, a success. It is now our hope that our application

design process can serve as a template for others to preserve various types of historical records

using a similar method as we have used in our project. Our team has gained a new insight into

the creation and design of websites, especially those backed by databases, and we hope to use

this information in the future to help create and teach others how to create sites like the one

created with this project.

69

12. References

Beck, Kent, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,

Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian

Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas.

2001. “Agile Manifesto.” accessed October 15.

Chronicling America. 2017. “Chronicling America.” Library of Congress, accessed

October 9. Rails. 2017. “Welcome to Rails.” Ruby on Rails, accessed October 15.

Clinger, Will. 2016. “Disadvantages of the Scrum Process.” Northeastern University

accessed 15 October.

Clinger, Will. 2016. “Advantages of the Scrum Process.” Northeastern University

accessed 15 October.

Encyclopedia Virginia. 2017. “Encyclopedia Virginia.” Virginia Foundation for the

Humanities, accessed October 9.

Eriksson, Ulf. 2015. “The Difference Between Functional and Non-Functional

Requirements.” ReQtest, accessed October 23.

Hughey, Douglas A. 2009. “The Traditional Waterfall Approach.” University of

Missouri-St. Louis, accessed October 14.

Hughey, Douglas A. 2009. “Scrum.” University of Missouri-St. Louis, accessed 15

October.

IT Knowledge portal. 2017. “Software Development Methodologies.” Association of

Modern Technologies Professionals, accessed October 9.

Price, Gene Hill. 1999. “The waterfall model.” Old Dominion University, accessed 14

October.

Prosoft Nearshore. 2015. “5 Types of Scrum Meetings.” Prosoft, LLC., accessed 15

October.

Rawson, David Andrew. 2016. An Index of Virginia Printing. Virginia: The College of

William & Mary.

Rouse, Margaret. 2017. “database (DB).” SearchSQLServer, accessed October 9.

Stellman, Andrew. 2009. “Requirements 101: User Stories vs. Use Cases.”

WORDPRESS, accessed October 9.

70

Techopedia. 2017. “Software Framework.” Techopedia Inc., accessed October 9.

Virginia Historical Society. 2017. “Exhibitions.” Virginia Historical Society, accessed

October 9.

71

Appendix 1

Biography (People) Data Fields:

ID: Unique identifier assigned to each individual trade-person.

Entry Name: The most common form of name of the individual associated with printing trade1

in the form (last name, first name).

Formal Name: Full name of the individual, if amends/differs from entry name, in the form (first

name, last name, honorific).

Function: Relationship of the individual to print trade (i.e. printer, publisher, editor, bookbinder,

bookseller, librarian, plate engraver, and plate printer, or apprentices to those roles).

Locales: Places where individual practiced the print trade (i.e. Lewis Adams published a

newspaper in the locale of Richmond).

Precis: A short statement that explains the relation of individual to all their associated fields in

plain text.

First Date: Earliest known date individual was practicing print trade.

Last Date: Last known date individual practiced print trade.

IVP Associates: Other individuals listed in the database that this individual shared a relationship

to in the printing trade.

Newspaper(Journal) Data Fields:

Lineage No.: Unique identifier for each family of newspaper titles, assigned in chronological

order by locale and earliest date initial journal appeared there, covering all subsequent changes

1
 ‘printing trade’ throughout this appendix refers to the Virginia printing trade pre-1820’s.

72

in title and/or ownership. For example (Lynchburg 04).

Group Title: Short title assigned to this family of newspapers, usually the most familiar title

form during journal's lifetime.

Variant No.: Chronological numbering of titles seen in this newspaper family, corresponding to

changes in journal's title, publication frequency, and ownership.

Variant Title: Title employed by this variant number.

Start Date: Earliest date that this variant title was published.

End Date: Latest date that this variant title was published.

Frequency: How often this variant title was published (weekly, twice weekly, thrice weekly,

daily, etc.).

Proprietor(s): Name of publisher as reported in this variant title.

IVP Associates: Individuals involved in production of this variant title, using corresponding

identifier number in Biography table.

LC Control: Control number (aka LCCN) assigned to this variant title by Library of Congress in

its MARC-format electronic-catalogue-record2.

Brigham: Reference number assigned by Clarence S. Brigham in his History and Bibliography

of American Newspapers, 1690-1820 (1962).

Cappon: Reference number assigned by Lester J. Cappon in his Virginia Newspapers, 1821-

1935: A Bibliography with Historical Introduction and Notes (1936).

Norona‐Shelter: Reference number assigned by Delf Norona and Charles Shetler in their West

Virginia Imprints 1790-1863: A Checklist of Books, Newspapers, Periodicals, and Broadsides

(1958).

2
 MARC format is the standard form employed in modern electronic imprint records.

73

Sabin: Reference number assigned by Joseph Sabin in his Bibliotheca Americana: A dictionary

of books relating to America, from its discovery to the present time (1868-1936).

Evans: Reference number assigned by Charles Evans in his American Bibliography: A

Chronological Dictionary of All Books, Pamphlets, and Periodical Publications Printed in the

United States of America from the Genesis of Printing in 1639 down to and including the Year

1820 (1903-1959).

Imprint Data Fields:

Imprint No.: Unique two-part identification number assigned to this imprint, beginning

with the year that this title was issued, followed by number representing the approximate

place in the chronology of publications produced during that year (i.e. 1730.001 or

1731.001).

Short Title: A shortened title assigned to this imprint, designed to facilitate searches and

standardize minor variations in titles in a recurring imprint series, such as government

documents.

Author: The author (or authors) of this imprint reported in this record.

Title: Full transcription of the long-form as printed on the title-page of this imprint.

Place Issued: The city or town in Virginia where this imprint was issued.

Issuing Press: Printer or press office issuing this imprint.

Description: Reports physical characteristics of this imprint, including page count, page size,

and binding.

IVP Associated Names: Individuals involved in production of this imprint, using

corresponding identifier number in Biography.

74

EAI Series #: Indicates whether this imprint was filmed as part of the Early American Imprint

series (a subscription service offered by Readex/Newsbank), and reports reference number that

was assigned to that item, also indicates if filmed. Initially just two series, based on numbering

seen in the Evans bibliography; a third series followed (Readex/EAI Supplements) employing

new numbers not seen in Evans.

Evans: Reference number assigned by Charles Evans in his American Bibliography: A

Chronological Dictionary of All Books, Pamphlets, and Periodical Publications Printed in the

United States of America from the Genesis of Printing in 1639 down to and including the Year

1820 (1903-1959).

Bristol: Reference number assigned by Roger P. Bristol in his Supplement to Charles Evans'

American Bibliography (1970).

Shipton‐Mooney: Usually the reference number assigned by Charles Evans in his American

Biography, as summarized by Clifford K. Shipton and James E. Mooney in their National Index

of American Imprints Through 1800: The Short-title Evans (1969).

Shaw‐Shoemaker: Reference number assigned by Ralph R. Shaw and Richard H. Shoemaker in

their American Bibliography: A Preliminary Checklist for 1801-1819 (1958-1966).

Shoemaker: Reference number assigned by Richard H. Shoemaker in his A Checklist of

American imprints for 1820-1829 (1964-1973).

Readex/EAI Supplements: [see EAI above].

Norona‐Shetler: Reference number assigned by Delf Norona and Charles Shetler in their West

Virginia Imprints 1790-1863: A Checklist of Books, Newspapers, Periodicals, and Broadsides

(1958).

75

Clayton‐Torrence: Reference number assigned by William Clayton-Torrence in his Trial

Bibliography of Colonial Virginia (1908).

Swem, Virginia: Reference number assigned by Earle Gregg Swem in his “A Bibliography of

Virginia,” in three parts (1910-1919).

Swem, Conventions: Reference number assigned by Earle Gregg Swem in his “A Bibliography

of the Conventions and Constitutions of Virginia” (1910).

Drake, Almanacs: Reference number assigned by Milton Drake in his Almanacs of the United

States (1962).

Hummel, Southeastern: Reference number assigned by Ray O. Hummel, Jr. in his Southeastern

Broadsides Before 1877: A Bibliography (1971).

Hummel, Virginia: Reference number assigned by Ray O. Hummel, Jr. in his More Virginia

Broadsides Before 1877 (1975).

Rink, Tech Americana: Reference number assigned by Evald Rink in his Technical Americana:

a checklist of technical publications printed before 1831 (1981).

Wegelin, Am Poetry: Reference number assigned by Oscar Wegelin in his Early American

Poetry: a compilation of the titles of volumes of verse and broadsides … issued during the

seventeenth and eighteenth centuries (1903).

Sabin, Bib Americana: Reference number assigned by Joseph Sabin in his Bibliotheca

Americana: A dictionary of books relating to America, from its discovery to the present time

(1868‐1936) for the national bibliography list compiled by Joseph Sabin.

Lincoln, Am Cookbooks: Reference number assigned by Waldo Lincoln and Eleanor

Lowenstein in their American Cookery Books, 1742‐1860 (1954) for the national cookery

book list compiled by Waldo Lincoln and Eleanor Lowenstein.

76

Adams, Am Pamphlets: Reference number assigned by Thomas Randolph Adams in his

American Independence: The growth of an idea; a bibliographical study of the American

political pamphlets printed between 1764 and 1776 dealing with the dispute between Great

Britain and her colonies (1965).

Winans, Book Catalogs: Reference number assigned by Robert B. Winans in his Descriptive

Checklist of Book Catalogues Printed Separately in America, 1693-1800 (1981).

Wright, American Fiction: Reference number assigned by Lyle Henry Wright for his American

Fiction, 1774-1850: A Contribution toward a Bibliography (1969).

Ford, Ratification Biblio.: Reference number assigned by Paul Leicester Ford in his

Bibliography and Reference List of the History and Literature relating to the Adoption of the

Constitution of the United States 1787-8 (1896).

Eng Short Title Catalogue: Reference number assigned by the English Short Title Catalogue

project, managed by the British Library and the Research Libraries Network of the United States.

ESTC is a record of titles of imprints published between 1473 and 1800 in Britain and North

America, and primarily in English. Data is available through the website of the British Library.

Walgren, Freemasonry: Reference number assigned by Kent Logan Walgren in his A

Bibliography of pre-1851 American Scottish Rite Imprints (non-Louisiana) (1994).

Wheeler, MD Press: Reference number assigned by Joseph Towne Wheeler in his The

Maryland Press, 1777-1790 (1938).

Lowens, Songsters: Reference number assigned by Irving Lowens in his The American Songster

before 1821: A List of Incomplete and Unlocated Titles (1960).

77

McDonald, Carriers' Addresses: Reference number assigned by Gerald D. McDonald, Stuart

C. Sherman, and Mary T. Russo in their A Checklist of American Newspaper Carriers'

Addresses, 1720-1820 (2000).

Ford, Biblio. Hamiltoniana: Reference number assigned by Paul Leicester Ford in his

Bibliotheca Hamiltoniana: A List of Books Written by or relating to Alexander Hamilton (1886).

Austin, Medical Imprints: Reference number assigned by Robert B. Austin in his Early

American Medical Imprints: A guide to works printed in the United States, 1668-1820 (1961).

Skeel, Mason Locke Weems: Reference number assigned by Emily Ellsworth Ford Skeel in her

Mason Locke Weems, His Works and Ways (1929). [PLF was Skeel's brother; when he died, she

completed his unfinished bibliography]

Welch, Amer Children's Books: Reference number assigned by A. S. W. Rosenbach in his

Early American Children's Books (1933).

Winans, Book Catalogues: Reference number assigned by Robert B. Winans in his A

Descriptive Checklist of Book Catalogues Printed Separately in America, 1693-1800 (1981).

Bötte & Tannhof, German Printing: Reference number assigned by Gerd-J. Bottle and Werner

Tannhof in their bibliography appended to Karl John Richard Arndt and Reimer C. Eck, The

First Century of German Language Printing in the United States of America (1989).

Albaugh, Religious Periodicals: Reference number assigned by Gaylord P. Albaugh in his

History and Annotated Bibliography of American Religious Periodicals and Newspapers,

established from 1730 through 1830 (1994).

Singerman, Judaica Americana: Reference number assigned by Robert Singerman in his

Judaica Americana: A bibliography of publications to 1900 (1990).

78

Amer. Broadsides & Ephemera: Latest Readex/Newsbank project, accessed through the

Archive of Americana, as subscription service. Includes: “American Broadsides and Ephemera,

Series I; Civil War Broadsides and Ephemera; The American Civil War Collection, 1860-1922:

From the American Antiquarian Society; Afro-Americana Imprints from the Library Company

of Philadelphia, 1535-1922.”

79

Appendix 2

Table 1: Excerpt from Imprint Dataset A-G

80

Table 2: Excerpt from Imprint Dataset H-Q

81

Appendix 3

Table 3: Excerpt from Journals Dataset A-G

82

Appendix 4

Table 4: Excerpt from People Dataset A-F

83

Appendix 5

Historian User Manual

This user manual accompanies the Virginia Printing Database (VPDB) application and will help

visitors to the website and trusted historians navigate the application.

Part 1: Website Visitor

The first category of users is a visitor to the website who wants to learn about the history of the

printing trade in pre-1820 Virginia. This could be a student, researcher, genealogist, or just

someone who is curious. This user has experience in using the Internet and search engines but

does not have a technical background.

The first page of the website (Figure 23, https://indexvirginiaprinting.org/) gives some

background on the project and explains the types of records available in the database. From

there, users may browse and search through these records.

Figure 23: The homepage of the Index of Virginia Printing

https://indexvirginiaprinting.org/

84

Browsing Records

Browsing and viewing records on the website is very easy. There are many ways to browse the

website, such as by record type, chronologically, or following related links.

Viewing Records

Each of the four record types has and index listing all records of those types. You can access

these pages under the “Browse…” button in the navigation toolbar. These four pages are:

● Biographical Directory: https://indexvirginiaprinting.org/bios/

● Catalogue of Imprints: https://indexvirginiaprinting.org/imprints/

● Histories of Newspaper Lineages: https://indexvirginiaprinting.org/news_hists/

● Citation of each Newspaper Variant: https://indexvirginiaprinting.org/news_cites/

The directory pages are split into pages to manage the huge number of records in the database, so

you will need to click through “next” page to see them all. Through these links you will find data

about each record in the database. For example, by clicking the first link in the catalogue of

imprints, you will see the data associated with “Typographia: An ode, on printing” (Figure 24,

http://indexvirginiaprinting.org/imprint/1730.001/).

Figure 24: Imprint “Typographia: An ode, on printing” available on the Index

https://indexvirginiaprinting.org/bios/
https://indexvirginiaprinting.org/imprints/
https://indexvirginiaprinting.org/news_hists/
https://indexvirginiaprinting.org/news_cites/
http://indexvirginiaprinting.org/imprint/1730.001/

85

Each record also provides a link to a Printer-Friendly PDF which contains all the information on

the record's page but formatted for printing in black and white.

Chronology

The Imprint records are also available sorted by publication date (Figure 25,

http://indexvirginiaprinting.org/chronology/imprints/). You can access this page through the

“Browse…” button in the navigation toolbar.

Figure 25: Browse imprint records by the year they were published.

Linking associations

Almost all records in the database are linked with others. At the bottom of each record page is a

list of the biographies, imprints, or newspapers the record is associated with. All of these are

hyperlinks to the associated record. For example, the page for William Parks (Figure 26,

http://indexvirginiaprinting.org/bio/321/) has links to the 3 tradespeople, 1 newspaper variant,

and 121 imprint records he is associated with. This provides a way to navigate through related

records, and to cross-reference related information.

http://indexvirginiaprinting.org/chronology/imprints/
http://indexvirginiaprinting.org/bio/321/

86

Figure 26: Excerpt from the page for William Parks showing some of his associations

Searching Records

If you are interested in searching for a subset of the records available, the Index provides a search

function on all the records in the database. This search is simple but will allow you to ensure the

results are related to your interests. All search is case-insensitive, so a search for “john” and

“John” are the same search.

There are two ways to initiate a search. The first is from the index page in the search box at the

bottom of the page (Figure 27). The second is the magnifying glass in the top right corner of the

header (Figure 28). When clicked, it will expand into a search box where you can type your

query. This ensures that you are always able to initiate a search from anywhere on the web

application.

Figure 27: The search box available on the Index Page

87

Figure 28: The location of the magnifying glass in the webpage header.

Default Search

When you initiate a search from the header or index page, the application searches the database

for instances of your query. The search does not search all possible properties of the records. By

default, it will search the name or title of a record and the 'notes' section. Specifically, it will

search the following for any word in the query:

● Biography

○ Name

○ Notes

● Imprint Record

○ Full Title

○ Short Title

○ Notes

● Newspaper Citations

○ Title

○ Notes

● Newspaper Histories

○ Group Title

○ Notes

It will separate the query into words and search for any of them, so “John Quincy Adams”

becomes “john” OR “Quincy” OR “Adams”. If records of more than one type match the search

query, they will all be in the results. You may need to go through multiple pages to find the

results you are interested in.

All searches are encoded in the URL, so search results may be shared. For example, if you copy

the URL of the search results for “Adams” (Figure 29,

http://indexvirginiaprinting.org/search/?search_term=adams) you may share it with someone else

or save it for later.

http://beta.indexvirginiaprinting.org/search/?search_term=adams

88

Figure 29: The default search results for “Adams”

Limiting Records & Fields Searched

After a basic search, the results page includes a section that allows you to refine your search (left

side of Figure 29, above). This series of checkboxes allows you to limit or expand your searches.

If you uncheck any of the 4 top-level record types, the application will not search within those

record types. You may also check or uncheck properties of the records, such as biography

locales, to include or exclude them in the search. For example, if you are interested in the

biographies of editors, you can check 'Biographies' and 'Function' and search for 'editor' (Figure

30).

89

Figure 30: Limiting the search for biographies who have a function listed as “editor”

Boolean Search

The application also supports a simple implementation of Boolean search. This allows you to be

more specific about records that should be returned. You can use Boolean search in the following

ways:

● Search for a phrase: if you include quote marks (“) around a phrase, the entire phrase

will be treated as one search word. For example, searching for “John Quincy Adams”

(with quotes) will only return records with the entire name of the 6th president, whereas

searching without quotes will give results for records that include any of the names

“John” “Quincy” or “Adams”.

● Require a word be in the search results: If you include a plus sign (+) before a word,

all results must include it. For example, if you search for '+John +Quincy +Adams', all

three names must be in the record, but they may not necessarily be in that order.

90

● Eliminate a word from the search results: If you include a minus sign (-) before a

word, the record will not include it. However, this is limited to a single property of the

record. For example, if you search 'Adams -Lewis' on the biography name field only, the

result is the record for 'Adams'. If you include the biography notes field in the search,

'Lewis Adams' will also be in the results because the search is true on the notes field (the

notes for Lewis Adams never include the word 'Lewis').

Combined with field search, Boolean search allows highly specific searches.

Part 2: Trusted Historian

A trusted historian is someone who has administrator access to the website. They can create,

update, and remove records from the database.

Logging In

The administrator website is available at https://indexvirginiaprinting.org/admin. First, you must

log into the administrator website (Figure 31). Enter the username and password for the

administrator site. There are no account recovery options if you do not know the credentials.

Once logged in, you will be able to see the site administration page (Figure 32).

Figure 31: The login page for the administrator website

https://indexvirginiaprinting.org/admin

91

Figure 32: The landing page for the administrator website.

Updating Records

The trusted historian can use the administrator page to change the records in the Index without

having to directly manipulate the database. They can create new records, edit existing records,

and delete records.

Create

To create a new record, click the “Add” button in the row corresponding to the type of record

you want to add (Figure 33). You will be taken to a new page which has a form to fill out (Figure

34). The bold fields are required. For the biography record, you can add many different

associates by holding CTRL and clicking names in the “associates” list. You may also add an

associate on the fly by clicking the green plus sign next to the list of existing associates. When

you are ready to add the record to the database, click “Save” on the bottom right. If you provide

92

an invalid value, such as an ID that already exists in the database, you will get an error when you

try to save the record (Figure 35).

Figure 33: Add a Biography by clicking the “Add” button in that row

93

Figure 34: A blank biography record allows the trusted historian to add new records.

Figure 35: An error occurred trying to save this record because the ID is already in use

94

Edit

The trusted historian may edit records by clicking the “Change” button in the appropriate row. The

application will then show you a list of existing records (Figure 36). When you click on a record to edit it,

the form will auto-populate with the existing values for that record (Figure 37). When you have made

your changes, click “Save”.

Figure 36: The list of biographies in the database. Select one to edit.

95

Figure 37: The form populates with the record's data and may be changed graphically.

Delete

A trusted historian may delete a record from the page used to make changes to it (Figure 37,

above) by clicking the red “Delete” button in the bottom left corner. They may also delete

multiple records at once. In the listing of the records, check the box corresponding to the records

to be deleted (Figure 38) and select “Delete records” from the “Action” dropdown menu.

96

Figure 38: Select multiple records to delete and choose “Delete” in the dropdown menu

Administrator History

The application will save a record of the changes made to the database, so if unauthorized

changes were made through the administrator interface they will appear under “Recent Actions”

(Figure 39). However, these do not act as “restore” points for the records: if an item has been

deleted it cannot be added back and clicking a record that has been changed will only show the

current content of that record.

97

Figure 39: The “Recent Actions” list shows records have been added, edited, and deleted.

98

Appendix 6

Administrator User Manual

This user manual accompanies the Virginia Printing Database (VPDB) application and will help

the administrator learn how to set up and manage the application.

Assumed Background

To manage the application, the admin does not require any specific technical experience.

However, when installing the application, the administrator is assumed to have some background

in web servers and access to a remote server running cPanel3. The hosting service should also

have a MySQL4 database available. In the initial production version, the hosting provider was

Reclaim Hosting5. The following walkthrough will explain how VPDB was deployed to Reclaim

Hosting. A similar process may be followed for other remote servers running cPanel.

The administrator will additionally need access to data, in the form of CSV files, to populate the

application. As the historical data is the intellectual property of the project's client, it is not

provided with the documentation or application code.

To summarize, deploying the application will require:

❏ A server running cPanel

❏ An instance of MySQL

❏ Data to populate the website with

❏ MySQL Workbench6, for directly manipulating the database

3 https://cpanel.com/
4 https://www.mysql.com/
5 https://reclaimhosting.com/
6 https://www.mysql.com/products/workbench/

https://cpanel.com/
https://www.mysql.com/
https://reclaimhosting.com/
https://www.mysql.com/products/workbench/

99

Installing the Application

This section will explain how to deploy VPDB onto a new server running cPanel.

Getting the Code

There are many options for getting the code onto the server. Two ways are explained below. The

first is to download the code locally and upload to cPanel. Alternatively, if the administrator is

comfortable using the command line, they may log into the server and download the code

directly onto the server.

Via cPanel

1. Download the Code

The first step is to download the application code. This is hosted on GitHub at

https://github.com/lbowenbiggs/virginia-printing-db. Click the green “Clone or download”

button and select “Download ZIP” (see Figure 40). Save the file to your local computer.

Figure 40: Download the application code as a ZIP file from GitHub.

https://github.com/lbowenbiggs/virginia-printing-db

100

2. Log into cPanel File Manager

Now log into the web server. On reclaim hosting, this is done by entering credentials at

https://portal.reclaimhosting.com/. At the 'Client Area' select “cPanel” (Figure 41). Then in

cPanel, click “File Manager” (Figure 42).

Figure 41: Click 'cPanel' on the Client Area navigation toolbar

Figure 42: Click 'File Manager' in the cPanel navigation toolbar.

3. Upload the code using the file manager

With the home directory selected (the top-level folder, /home/indexvir in Figure 43), click the

“Upload” button in the toolbar. On the next page, either click and drag the local file or use the

“Select File” button to upload the local file. Once the file is done uploading (Figure 44), navigate

back to the file manager.

Figure 43: Select 'Upload' in the File Manager

https://portal.reclaimhosting.com/

101

Figure 44: The ZIP file containing the code has successfully uploaded

4. Extract the Code

With the ZIP file selected, click “Extract” from the File Manager toolbar (Figure 45). In the

dialog that pops up, leave the path field blank (Figure 46). The application will extract itself into

a folder in the home directory named “virginia-printing-db-master” (Figure 47).

Figure 45: With the ZIP file selected, click “Extract” from the File Manager Toolbar

102

Figure 46: In the “Extract” dialog, leave the 'path you with to extract the files to' blank.

Figure 47: Application code is available on the system.

Advanced: Via git

This method is appropriate if changes are being made to the application code and the

administrator wants to easily keep the application up to date. However, this method requires

additional configuration to use, and is not appropriate for most administrators. In addition, to use

this method you will need an SSH client such as PuTTy.

103

1. Create SSH Keys to access the server

This step will create a secure “key”, so the administrator can directly access the command line

interface on the server. Log into the server (for example, https://portal.reclaimhosting.com/) and

select cPanel from the Client Area toolbar (see Figure 41, above). Under the “Security” heading,

select “SSH Access” (Figure 48). Click through “Manage SSH Keys” (Figure 48). Under the

“Manage SSH Keys” header, click “Generate a New Key” (Figure 49).

Figure 48: In the initial “SSH Access” screen, click “Manage SSH Keys”

Figure 49: Under the “Manage SSH Keys” heading, click “Generate a New Key”

https://portal.reclaimhosting.com/

104

Leave the default settings for the key alone. The default is to set the Key Name as “id_rsa”, the

Key Type as RSA, and the key size as 2048 bits. Create a strong password for the key, which

will help secure it against unauthorized use (Figure 50). Click “Generate Key” to create the key.

The next page will show the successful creation of the key (Figure 51).

Figure 50: Create a strong password for the key

Figure 51: The successful creation of the key

105

Finally, authorize the public key. This will allow it to be used to log into the server. Under the

“Public Keys” heading, select “Manage” for the key that was created. Note the “Authorization

Status” says that it is “not authorized” (Figure 52). In the next screen, click “Authorize” (Figure

53).

Figure 52: Click “Manage” to authorize the SSH key that was created

Figure 53: Click “Authorize” to authorize the SSH key for access to the account.

2. Configure a local SSH client

This tutorial assumes that the SSH client is PuTTy7, a free application available for Windows. A

guide to configuring PuTTy can be found at Indiana University's Website8.

3. Clone the application code

Please see GitHub's guide to cloning a repository9 for more information.

Configuring the Database

Before the application will work, it needs to be connected to a database. This section will explain

how to set up and configure a MySQL database on the same server that hosts the code.

7 https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
8 https://kb.iu.edu/d/aews
9 https://help.github.com/articles/cloning-a-repository/

https://kb.iu.edu/d/aews
https://help.github.com/articles/cloning-a-repository/
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://kb.iu.edu/d/aews
https://help.github.com/articles/cloning-a-repository/

106

Create a MySQL Database

First the administrator of the web application must create a MySQL database.

1. Create Database

In cPanel, under the “Databases” heading, select “MySQL® Databases” (Figure 54). Then, under

“Create a New Database”, give the database a name and click “Create Database” (Figure 55). In

this example, the name given is 'example_db'. This name is appended to the username of the

administrator, so the full name of the database is 'indexvir_example_db'.

Figure 54: Under “Databases”, select “MySQL® Databases”

107

Figure 55: Create a Database by giving it a name

2. Create a User

A database user is separate from the administrative user of the server and must be created

separately. Under “MySQL Users”, give the user a strong password and a name (which, like the

database name, will be prefixed with the username of the server) (Figure 56). In this example,

the username is 'exUser', so the full username is 'indexvir_exUser'.

Figure 56: Create a new MySQL User with a name and strong password

108

3. Add User to Database

Add the user to the database that was created (Figure 57). This gives the user permission to read

and write to the database. This 'user' is going to be the application, so it will need all permissions

(Figure 58).

Figure 57: Add the user to the database that was created by selecting them from the menus

Figure 58: Give the MySQL user all permissions on the database

109

Remote Access

When populating the database with many records, it is much easier to import directly into

MySQL instead of using the admin interface to individually add each one. To connect to the

database, the MySQL client must be on a whitelisted domain. To find out what the local domain

is, attempt a connection. The error message will include the domain name which you can then

whitelist.

1. Attempt to Connect to the Database

Open MySQL Workbench and select “Connect to Database…” under “Database (Figure 59). In

the dialog, enter the name of the server and database user to connect with. In this case, connect to

indexvirginiaprinting.org with indexvir_exUser (Figure 60). Leave the port number and all other

settings in their defaults. When you click “OK”, you will get an error message (Figure 61) that

reads “Host '[hostname] [domain name]' is not allowed to connect to this MySQL server”. The

domain name is what will used in the next step to whitelist this client computer.

Figure 59: In MySQL Workbench, Connect to a Database

110

Figure 60: The “Connect to Database” dialog. Fill out Hostname and Username

111

Figure 61: Error message revealing the domain name of the local machine.

2. Whitelist your Domain Name

In cPanel, under the “Databases” heading, select “Remote MySQL®” (Figure 62). Under “Add

Access Host”, add the domain name of the client computer. Use the wildcard character '%' to

allow any host within your network to access the database (Figure 63). Click “Add Host”

Figure 62: Under the “Databases” heading, select “Remote MySQL®”

112

Figure 63: Add the client computer's domain name to allow it to connect to the database

3. Connect to the Database

In MySQL Workbench, connect to the database as before (Figure 60, above). This time when

“OK” is clicked, MySQL Workbench will prompt for the database user's password. When this is

entered, it will display the database (Figure 64).

Figure 64: Successful connection between the client and the MySQL database

113

Configuring the Application

The next step is to configure the server to run the code that has been uploaded to it. This will

require manipulating server settings through cPanel, editing the application settings file, and

running a few commands.

Creating a Python Application in cPanel

In the 'software' section of cPanel, select “Setup Python App” (Figure 65).

Figure 65: “Select Python App” under 'Software'

On the “Setup Python App” page, fill out the “Setup new application” form (Figure 66). For the

Index, the Python version is 3.5. The App Directory is the folder you unzipped the application

code to (see “Getting the Code”, above). Leave the App Domain/URI as the default to make the

application appear on the main page of your domain. When you click “Setup”, you will see the

settings for the application under “Existing applications” (Figure 67).

Figure 66: “Setup new application” settings for the Index

114

Figure 67: Settings for the new application under “existing applications”

Edit application settings

Next, you will need to edit the python application settings. First, click “Edit” on the far right of

the “WGI file location” row. Enter “VPDB/wsgi.py:application” and click “Save” (Figure 68).

This tells the server where to start the application.

Figure 68: Edit the WGI file location in the application settings

To add dependencies, click “Show” in the “modules” column. In the text box, type “Django” (It

may be slow to load as it searches through the modules). Select the “Django” dependency, and

then version 1.11.5, which is what version this application uses. Click “Add”. Now add the

dependency for “mysqlclient” and click “Add”. At the bottom of the application settings, click

“Update”. You will see that it successfully loaded the modules (Figure 69). A few other modules

(pytz and wheel, for example) may be added as well.

115

Figure 69: Completed application settings for the Index.

Modify settings.py for Production

The code is, by default, for development. You will need to edit a few things to make it suitable

for production. In the File Manager, navigate to “virginia-printing-db-master/VPDB/settings.py”

and click the “Edit” button (Figure 70). This will take you to a text editor (Figure 71). Make the

sure the following settings are correct:

● Line 26: Debug must be set to False to prevent the server from giving details that may

compromise the security of the application.

DEBUG = False

● Line 28: Allowed Hosts must include the URL of the website, so the application can run

ALLOWED_HOSTS = ['indexvirginiaprinting.org’]

● Lines 80-89: The Database must be configured to use the mySQL database created above.

Set the NAME property to be the name of the database you created, the USER property

to be the user of the database you created and update the PASSWORD to match that user.

Ensure the ENGINE is set to use MySQL and the HOST and PORT are set to the location

of the server and the port MySQL is running on (3306 is the default).

DATABASES = {

 'default': {

116

 'ENGINE': 'django.db.backends.mysql',

 'NAME': 'indexvir_production',

 'USER': 'indexvir_admin',

 “PASSWORD”: '',

 'HOST': 'indexvirginiaprinting.org',

 'PORT': '3306'

 }

}

Figure 70: Select “Edit” to update the settings for production

Figure 71: Change the Debug settings through the text editor on the server.

117

Publishing the Application

The application is almost ready to use! To finalize the application, you will need to configure

static files and upload data to the server, so it can be accessed through the application.

Configure Static Files

Some of the application files are “static”, meaning they don't depend on the contents of the

database. These files are handled directly by the server, not through the application. For

performance reasons, these files should be separate from the application.

1. Create a Subdomain

The static files will live on a subdomain of the main website at static.indexvirginiaprinting.org.

To create the subdomain, click “Subdomains” under the “Domains” heading in cPanel (Figure

72). Then name the subdomain “static” and let the Document Root auto populate. Click create

(Figure 73).

Figure 72: Create a subdomain through cPanel

Figure 73: Name the subdomain 'static' and use the default document root.

118

2. Configure STATIC_URL & STATIC_ROOT

Next, change the settings of the application so it knows where to find the static files. Open

settings.py for editing (see “Modify settings.py for Production”, above). And change the static

settings to the following:

STATIC_URL = 'http://static.indexvirginiaprinting.org/'

STATIC_ROOT = '/home/indexvir/static.indexvirginiaprinting.org/'

The STATIC_URL should be set to the subdomain created in the previous step. The

STATIC_ROOT should be set to the Document Root created for the subdomain in the previous

step. Save settings.py.

3. Run collectstatic

Now, the application must move the static files into the static directory. From the “Setup Python

App” page (see “Edit Application Settings”, above), enter the following into the 'Execute

Command' Row (Figure 74):

./manage.py collectstatic --no-input

This will run the collectstatic command on the remote server and copy the files to the appropriate

location. You can verify the files copied correctly by using cPanel's file explorer (Figure 75).

Figure 74: Run the collectstatic command from the python application settings page

119

Figure 75: Verify the collectstatic command ran properly by checking the contents of

static.indexvirginiaprinting.org/VirginiaPrinting/

4. Add documents to the static directory

The application expects PDF versions of the records, which it links to as printable PDFs. Upload

the appropriate documents to static.indexvirginiaprinting/VirginiaPrinting/records under the

relevant directory.

Setting up the Database

Django sets up the database based on the record types specified in the application. To set up the

database with the right tables, run the following command from the Python Application Settings

'Execute command' row (Figure 76):

./manage.py migrate

Figure 76: Run the migrate command to configure the database tables

120

You can verify that the tables were added by logging into the database through MySQL

Workbench and viewing the list of tables (Figure 77).

Figure 77: The tables created by Django for the application in MySQL Workbench

Populate the Database

Now you will populate the database with the actual historical data. For each of the 7 tables in the

Virginia Printing application (these tables all start with 'VirginiaPrinting_'), you will need to:

1. Run the 'Table Data Import Wizard'

2. Select file to import

3. Import the file into the table

121

For details on this process, see the “Table Data Import Wizard”10 section of the MySQL

Workbench documentation. Once the database is populated, you will be able to see the

application live at https://indexvirginiaprinting.org/

Adding the first Admin User

Finally, you must create an administrator account for the application, so they may log into the

administrator website and modify records. To do this, log into the server via SSH (See

“Configure a Local SSH Client”, above). Navigate to the application directory and run

createsuperuser. Provide a username, email, and password11 (Figure 78). These cannot be

recovered if you forget them. Once the admin is successfully created, you will be able to log into

the administrator website12 with the credentials you just created (Figure 79).

Figure 78: Creating a superuser on the command line

Figure 79: Administrator login page

10 https://dev.mysql.com/doc/workbench/en/wb-admin-export-import-table.html
11 For more information on creating a superuser, see the Django documentation at

https://docs.djangoproject.com/en/1.11/intro/tutorial02/#introducing-the-django-admin
12 Available at https://indexvirginiaprinting.org/admin/

https://dev.mysql.com/doc/workbench/en/wb-admin-export-import-table.html
https://dev.mysql.com/doc/workbench/en/wb-admin-export-import-table.html
https://indexvirginiaprinting.org/
http://indexvirginiaprinting.org/admin
https://dev.mysql.com/doc/workbench/en/wb-admin-export-import-table.html
https://docs.djangoproject.com/en/1.11/intro/tutorial02/#introducing-the-django-admin
https://indexvirginiaprinting.org/admin/

